Anabolic response of bone to interstitial fluid flow is strongly dependent on the dynamic components of the fluid pressure, implying that fluid flow is a critical regulatory component to bone mass and morphology. While the fluid stimulus can be potentially applied for therapeutic in promoting turnover, the hypothesis of fluid induced bone adaptation was evaluated in an avian ulna model using varied flow rates and magnitudes. Total of 12 one-year old male avian animals was used in this study. A sinusoidal fluid pressure was applied to the experimental ulna 10 min/day for 4 weeks. Three experimental groups of loading were performed at 1 and 30 Hz of fluid loading. The results reveal an increase of 22.7%±7.2 in trabecular volume for group of 30 Hz, 76mmHg loading, while it had only 0.5 % increase at 1Hz, 76 mmHg loading. Under physiologic fluid pressure, a higher flow rate of stimuli generates much higher remodeling response than a lower rate of loading. This implies that bone turnover may be sensitive to the dynamic components of fluid flow, thereby initiating the adaptive response.

This content is only available via PDF.
You do not currently have access to this content.