This study investigates localization phenomena in two identical nonlinear tuned mass dampers (TMDs) installed on an elastic structure, which is subjected to external, harmonic excitation. In the theoretical analysis, the mode shapes of the system are determined, and the modal equations of motion are derived using modal analysis. These equations are demonstrated as forming an autoparametric system in which external excitation directly acts on the first and third vibration modes, whereas the second vibration mode is indirectly excited due to the nonlinear coupling with the other modes. Van der Pol’s method is employed to obtain the frequency response curves for both physical and modal coordinates. The two TMDs vibrate in phase for the first and third modes, but vibrate out of phase for the second mode. Consequently, when all modes appear, the two TMDs may vibrate at different amplitudes, i.e., localization phenomena may occur because the TMD motions are expressed by the summation of motions for all modes. The numerical calculations clarify that the localization phenomena may occur in the two TMDs when all three modes appear simultaneously. Moreover, there are two steady-state solutions of the harmonic oscillations for the second mode with identical amplitudes; however, their phases differ by π. Hence, which TMD vibrates at higher amplitudes depends on which of these two steady-state solutions for the phase.

This content is only available via PDF.
You do not currently have access to this content.