Advances in additive manufacturing processes have made it possible to build mechanical metamaterials with bulk properties that exceed those of naturally occurring materials. One class of these metamaterials is structural lattices that can achieve high stiffness to weight ratios. Recent work on geometric projection approaches has introduced the possibility of optimizing these architected lattice designs in a drastically reduced parameter space. The reduced number of design variables enables application of a new class of methods for exploring the design space. This work investigates the use of Bayesian optimization, a technique for global optimization of expensive non-convex objective functions through surrogate modeling. We utilize formulations for implementing probabilistic constraints in Bayesian optimization to aid convergence in this highly constrained engineering problem, and demonstrate results with a variety of stiff lightweight lattice designs.

This content is only available via PDF.
You do not currently have access to this content.