In modern automotive industry market, there have been a lot of state-of-art methodologies to perform a conceptual design of a car; functional methods and 3D scanning technology are widely used. Naturally, the issues frequently boiled down to a trade-off decision making problem between quality and cost. Besides, to incorporate the design method with advanced optimization methodologies such as design-of-experiments (DOE), surrogate modeling, how efficiently a method can morph or recreate a vehicle’s shape is crucial. This paper accomplishes an aerodynamic design optimization of rear shape of a sedan by incorporating a reverse shape design method (RSDM) with the aforementioned methodologies based on CFD analysis for aerodynamic drag reduction. RSDM reversely recovers a 3D geometry of a car from several 2D schematics. The backbone boundary lines of 2D schematic are identified and regressed by appropriate interpolation function and a 3D shape is yielded by a series of simple arithmetic calculations without losing the detail geometric features. Besides, RSDM can parametrize every geometric entity to efficiently manipulate the shape for application to design optimization studies. As the baseline, an Audi A6 is modeled by RSDM and explored through CFD analysis for model validation. Choosing six design variables around the rear shape, 77 design points are created to build neural networks. Finally, a significant amount of CD reduction is obtained and corresponding configuration is validated via CFD.

This content is only available via PDF.
You do not currently have access to this content.