An Extended Pattern Search (EPS) method is developed to optimize the layout and turbine geometry for offshore floating wind power systems. The EPS combines a deterministic pattern search with stochastic extensions. Three advanced models are incorporated: (1) a cost model considering investment and lifetime costs of a floating offshore wind farm comprised of WindFloat platforms; (2) a wake propagation and interaction model able to determine the reduced wind speeds downstream of rotating blades; and (3) a power model to determine power produced at each rotor, and includes a semi-continuous, discrete turbine geometry selection to optimize the rotor radius and hub height of individual turbines. The objective function maximizes profit by minimizing cost, minimizing wake interactions, and maximizing power production. A multidirectional, multiple wind speed case is modeled which is representative of real wind site conditions. Layouts are optimized within a square solution space for optimal positioning and turbine geometry for farms containing a varying number of turbines. Resulting layouts are presented; optimized layouts are biased towards dominant wind directions. Preliminary results will inform developers of best practices to include in the design and installation of offshore floating wind farms, and of the resulting cost and power production of wind farms that are computationally optimized for realistic wind conditions.

This content is only available via PDF.
You do not currently have access to this content.