Optimization is needed for effective decision based design (DBD). However, a utility function assessed a priori in DBD does not usually capture the preferences of the decision maker over the entire design space. As a result, when the optimizer searches for the optimal design, it traverses (or ends up) in regions where the preference order among different solutions is different from the actual order. For a highly non-convex design space, this can lead to convergence to a grossly suboptimal design depending on the initial design. In this article, we propose two approaches to alleviate this issue. First, we map the trajectory of the solution as generated by the optimizer and generate ranking questions that are presented to the designer to verify the correctness of the utility function. We then propose backtracking rules if a local utility function is very different from the initially assessed function. We demonstrate our methodology using a mathematical example and a welded beam design problem.

This content is only available via PDF.
You do not currently have access to this content.