One area in design optimization is component based design where the designer has to choose between many different discrete alternatives. These types of problems have discrete character and in order to admit optimization an interpolation between the alternatives is often performed. However, in this paper a modified version of the non-gradient algorithm the Complex method is developed where no interpolation between alternatives is needed. Furthermore, the optimization algorithm itself is optimized using a performance metric that measures the effectiveness of the algorithm. In this way the optimal performance of the proposed discrete Complex method has been identified. Another important area in design optimization is the case of optimization based on simulations. For such problems no gradient information is available, hence non-gradient methods are therefore a natural choice. The application for this paper is the design of an industrial robot where the system performance is evaluated using comprehensive simulation models. The objective is to maximize performance with constraints on lifetime and cost, and the design variables are discrete choices of gear boxes for the different axes.

This content is only available via PDF.
You do not currently have access to this content.