The state covariance assignment (SCA) method of Skelton and associates is applied in the present investigation to the optimal random vibration control of large scale complicated shell structures with embedded piezoelectric components. It provides a direct approach for achieving performance goals stated in terms of the root-mean-square (RMS) values which are common in many engineering system designs. The large scale shell structures embedded with piezoelectric components of complicated geometrical configurations are approximated by the hybrid strain or mixed formulation based lower order triangular shell finite element developed in the present investigation. This shell finite element has three nodes every one of which has seven degrees of freedom (dof). The latter include three translational dof, three rotational dof, and one electric potential dof. The element is a better alternative to those based on the displacement formulation and that hinged on the truly hybrid strain formulation. Representative results applying the SCA method for a shell panel embedded with piezoelectric components are included to demonstrate its simplicity of use and efficiency of implementing the proposed approach.
Skip Nav Destination
ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
September 24–28, 2005
Long Beach, California, USA
Conference Sponsors:
- Design Engineering Division and Computers and Information in Engineering Division
ISBN:
0-7918-4738-1
PROCEEDINGS PAPER
Optimal Control of Random Vibration in Shell Structures With Embedded Piezoelectric Components
Cho W. S. To,
Cho W. S. To
University of Nebraska, Lincoln, NE
Search for other works by this author on:
Tao Chen
Tao Chen
University of Nebraska, Lincoln, NE
Search for other works by this author on:
Cho W. S. To
University of Nebraska, Lincoln, NE
Tao Chen
University of Nebraska, Lincoln, NE
Paper No:
DETC2005-84792, pp. 1763-1770; 8 pages
Published Online:
June 11, 2008
Citation
To, CWS, & Chen, T. "Optimal Control of Random Vibration in Shell Structures With Embedded Piezoelectric Components." Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 1: 20th Biennial Conference on Mechanical Vibration and Noise, Parts A, B, and C. Long Beach, California, USA. September 24–28, 2005. pp. 1763-1770. ASME. https://doi.org/10.1115/DETC2005-84792
Download citation file:
2
Views
Related Proceedings Papers
Related Articles
Optimal Locations of Piezoelectric Patch on Wideband Random Point-Driven Beam for Energy Harvesting
J. Vib. Acoust (February,2018)
Random Vibration of Diamond-Beaded Rope Subject to a Concentrated Load
J. Vib. Acoust (February,2016)
Nonlinear Random Vibrations Using Second-Order Adjoint and Projected Differentiation Methods
J. Vib. Acoust (October,2022)
Related Chapters
Optimal Control in MIMO Systems
Robust Control: Youla Parameterization Approach
Feedback-Aided Minimum Joint Motion
Robot Manipulator Redundancy Resolution
QP Based Encoder Feedback Control
Robot Manipulator Redundancy Resolution