The goal of “intelligent” computer-aided-design (CAD) systems is to provide greater support for the process of design, as distinguished from drafting and analysis. More supportive design systems should provide a quick and simple means of creating and modifying design configurations, automating evaluation procedures (e.g., for manufacturing), and automating interfaces to analysis procedures.

In this paper we are concerned with the issues of representing in-progress designs so that such goals can be met. A feature-based representation is proposed in which features are defined as possessing not only form but also certain designer intentions regarding geometric relationships. A working experimental version of a design-with-features system using this representation for thin-walled components illustrates its use in composing a design as a configuration of feature-forms, in modifying the design geometry through automatic, intelligent incorporation and propagation of designer-initiated geometry changes, and in providing for the generation of user-defined features. In contrast to constraint-driven simultaneous equation solving methods, this system uses an intent-driven knowledge-based method to propagate and incorporate geometry modifications not only in fully-constrained designs, but also in over- and under-constrained designs. Issues of manageability, extensibility, and computationally efficiency were considered in the development of the core services of the system.

This content is only available via PDF.
You do not currently have access to this content.