This paper discusses the design, analysis, and testing of a Water Cooling System (WCS) for a Drift Tube Linear (DTL) Particle Accelerator structure at the Los Alamos Neutron Science Center (LANSCE). The DTL WCS removes large amounts of dissipated electrical energy in a very controlled manner to maintain a constant temperature of the large structure. First, the design concept and method of water temperature control is discussed. Second, the layout of the water cooling system, including the selection of plumbing components and instrumentation is presented. Next, the development of a numerical nodal network model, used to size the plumbing, pump, control valves, and mixing tank (heat exchanger), is discussed. Finally, empirical pressure, flow rate, and temperature data from a functioning DTL water cooling system are used to assess the water cooling system performance and validate the numerical model.

This content is only available via PDF.
You do not currently have access to this content.