Experimental data on a rough surface for both transitionally rough and fully rough turbulent flow regimes are presented for Stanton number distribution, skin friction coefficient distribution and turbulence intensity profiles. The rough surface is composed of 1.27 mm diameter hemispheres spaced in a staggered array four base diameters apart on an otherwise smooth wall. Special emphasis is placed on the characteristics of heat transfer in the transitionally rough flows. Stanton number data are reported for zero pressure gradient incompressible turbulent boundary layer air flow for nominal freestream velocities of 6, 12, 28, 43, 58 and 67 m/s, which give x-Reynolds numbers up to 10,000,000. These data are compared with previously published rough surface data, and the classification of a boundary layer flow into transitionally rough and fully rough regimes is explored. Moreover, a new heat transfer model for use in the previously published discrete element prediction approach is presented. Computations using the discrete element model are presented and compared with data obtained from two different rough surfaces. The discrete element predictions for both surfaces are found to be in substantial agreement with the data.

This content is only available via PDF.