The life consumption rate of the aircraft engine is a vital input for aircraft operators who aim to an efficient fleet management. T6 aircraft, propelled by the PT6 turboprop engine, is operated by the Hellenic Air Force, both for training and aerobatic purposes. The current study focuses on quantifying and comparatively assessing the engine life consumption rate for the following missions: i) An “aerobatic” mission which is a typical high intensity maneuver flight and ii) a “training for patrol” mission, representing a typical low intensity maneuver flight. Missions were selected with the criterion of setting the lowest and the highest possible engine loading during a certain mission. In other words, the goal of the study is to define the extent of the loading the engine can encounter as a propulsion system of the T-6 aircraft during a certain mission. This is the first step before proceeding in setting up a methodology for continuously monitoring the engine life consumption rate in support of the squadron flight management plan. The study was based on real time data recorded during the respective flights. An engine model built using “GasTurb” gas turbine simulation software was used to fill in engine operating data at stations where recordings have not been taken. Engine life consumption was based on creep and low cycle fatigue failure mechanisms of the first gas generator turbine stage. Creep life fractions were calculated based on the Larson-Miller parameter curves and the fatigue cycles were counted using the rainflow method. The study showed that the life consumption is about 10 times lower when the aircraft is operated at a low loading mode as opposed to a high loading mode.

This content is only available via PDF.
You do not currently have access to this content.