In this study, a shock tube is used to investigate combustion tendencies of several fuel mixtures under high carbon dioxide dilution and high fuel loading. Individual mixtures of oxy-syngas and oxy-methane fuels were added to CO2 bath gas environments and ignition delay time data was recorded. Reflected shock pressures maxed around 100 atm, which is above the critical pressure of carbon dioxide in to the supercritical regime. In total, five mixtures were investigated within a temperature range of 1050–1350K. Ignition delay times of all mixtures were compared with predictions of two leading chemical kinetic computer mechanisms for accuracy. The mixtures included four oxy-syngas and one oxy-methane combinations. The experimental data tended to show good agreement with the predictions of literature models for the methane mixture. For all syngas mixtures though the models performed reasonably well at some conditions, predictions were not able to accurately capture the overall behavior. For this reason, there is a need to further investigate the discrepancies in predictions. Additionally, more data must be collected at high pressures to fully understand the chemical kinetic behavior of these mixtures to enable the supercritical CO2 power cycle development.

This content is only available via PDF.
You do not currently have access to this content.