The fundamental impact of the precessing vortex core (PVC) as a dominant coherent flow structure in the flow field of swirl-stabilized gas turbine combustors has still not been investigated in depth. In order to do so, the PVC needs to be actively controlled to be able to set its parameters independently to any other of the combustion system. In this work, open-loop actuation is applied in the mixing section between the swirler and the generic combustion chamber of a non-reacting swirling jet setup to investigate the receptivity of the PVC with regard to its lock-in behavior at different streamwise positions. The mean flow in the mixing section as well as in the combustion chamber is measured by stereoscopic particle image velocimetry and the PVC is extracted from the snapshots using proper orthogonal decomposition. The lock-in experiments reveal the axial position in the mixing section that is most suitable for actuation. Furthermore, a global linear stability analysis is conducted to determine the adjoint mode of the PVC which reveals the regions of highest receptivity to periodic actuation based on mean flow input only. This theoretical receptivity model is compared with the experimentally obtained receptivity data and the applicability of the adjoint-based model for the prediction of optimal actuator designs is discussed.

This content is only available via PDF.
You do not currently have access to this content.