For film cooling of combustor linings and turbine blades, it is critical to be able to accurately model jets-in-crossflow. Current Reynolds Averaged Navier Stokes (RANS) models often give unsatisfactory predictions in these flows, due in large part to model form error, which cannot be resolved through calibration or tuning of model coefficients. The Boussinesq hypothesis, upon which most two-equation RANS models rely, posits the existence of a non-negative scalar eddy viscosity, which gives a linear relation between the Reynolds stresses and the mean strain rate. This model is rigorously analyzed in the context of a jet-in-crossflow using the high fidelity Large Eddy Simulation data of Ruiz et al. (2015), as well as RANS k-ε results for the same flow. It is shown that the RANS models fail to accurately represent the Reynolds stress anisotropy in the injection hole, along the wall, and on the lee side of the jet. Machine learning methods are developed to provide improved predictions of the Reynolds stress anisotropy in this flow.

This content is only available via PDF.
You do not currently have access to this content.