The pressure ratio of axial compressor stages can be significantly increased by controlling the development of blade and endwall boundary layers in regions of adverse pressure gradient by means of boundary layer suction. This concept is validated and demonstrated through the design and analysis of a unique aspirated compressor stage which achieves a total pressure ratio of 3.5 at a tip speed of 1500 ft/s. The aspirated stage was designed using an axisymmetric through-flow code coupled with a quasi three-dimensional cascade plane code with inverse design capability. Validation of the completed design was carried out with three-dimensional Navier-Stokes calculations. Spanwise slots were used on the rotor and stator suction surfaces to bleed the boundary layer with a total suction requirement of 4% of the inlet mass flow. Additional bleed of 3% was also required on the hub and shroud near shock impingement locations. A three-dimensional viscous evaluation of the design showed good agreement with the quasi three-dimensional design intent, except in the endwall regions. The three-dimensional viscous analysis predicted a mass averaged total pressure ratio of 3.7 at an isentropic efficiency of 93% for the rotor, and a mass averaged total pressure ratio of 3.4 at an isentropic efficiency of 86% for the stage.

This content is only available via PDF.
You do not currently have access to this content.