Compact and efficient fuel reforming system design is a major challenge because of strict requirements of efficient heat distribution on both the reforming and combustion side. As an alternative to traditional packed bed tubular reformers, catalytic flat plate fuel reformer offers better heat integration by combining the combustion reaction on one side and reforming reaction on the other side. In this study, with the help of a two-dimensional computational fluid dynamics (CFD) model, a catalytic flat plate fuel reformer is built and investigated its performance experimentally. The CFD model simulation results help to capture the effect of design parameters such as catalyst layer thickness, reaction rates, inlet temperature and velocity, and channel height. The CFD model study results also help to design and built the actual reformer in such a way that eliminate the limitations or uncertainties of heat and mass transfer coefficients. In our study, we experimentally evaluated the catalytic flat plate fuel reformer performance using natural gas. The effect of reformate gas on the current-voltage characteristics of a 5kW high temperature PEM fuel cell (HTPEMFC) stack is investigated extensively. The results shows that the overall system performance increases in terms of current-voltage characteristics of HTPEMFC while fed with reformate directly from the catalytic flat plate reformer.
Skip Nav Destination
ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability
June 30–July 2, 2014
Boston, Massachusetts, USA
Conference Sponsors:
- Advanced Energy Systems Division
ISBN:
978-0-7918-4588-2
PROCEEDINGS PAPER
Experimental Performance Evaluation of a Catalytic Flat Plate Fuel Reformer for Fuel Cell Grade Reformate
Susanta K. Das,
Susanta K. Das
Kettering University, Flint, MI
Search for other works by this author on:
K. Joel Berry
K. Joel Berry
Kettering University, Flint, MI
Search for other works by this author on:
Susanta K. Das
Kettering University, Flint, MI
K. Joel Berry
Kettering University, Flint, MI
Paper No:
FuelCell2014-6399, V001T04A001; 6 pages
Published Online:
October 28, 2014
Citation
Das, SK, & Berry, KJ. "Experimental Performance Evaluation of a Catalytic Flat Plate Fuel Reformer for Fuel Cell Grade Reformate." Proceedings of the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability. ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. Boston, Massachusetts, USA. June 30–July 2, 2014. V001T04A001. ASME. https://doi.org/10.1115/FuelCell2014-6399
Download citation file:
6
Views
0
Citations
Related Proceedings Papers
Related Articles
Simulation-Aided PEM Fuel Cell Design and Performance Evaluation
J. Fuel Cell Sci. Technol (February,2005)
Numerical Analysis of the Heat and Mass Transfer Characteristics in an Autothermal Methane Reformer
J. Fuel Cell Sci. Technol (October,2010)
Thermal-Fluid-Dynamic Simulation of a Proton Exchange Membrane Fuel Cell Using a Hierarchical 3D-1D Approach
J. Fuel Cell Sci. Technol (August,2007)
Related Chapters
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Numerical Simulation Research on a Fixed Bed Gasifier
International Conference on Information Technology and Management Engineering (ITME 2011)