In this study, a free vibration analysis of a polymer electrolyte membrane fuel cell (PEMFC) is performed by modelling the PEMFC as a composite plate structure. The membrane, gas diffusion electrodes, and bi-polar plates are modelled as composite material plies. Energy equations are derived based on the Mindlin plate theory, and natural frequencies and mode shapes of the PEMFC are calculated using finite element modelling. A parametric study is conducted to investigate how the natural frequency varies as a function of thickness, Young’s modulus, and density for each component layer. It is observed that increasing the thickness of the bi-polar plates has the most significant effect on the lowest natural frequency, with a 25% increase in thickness resulting in an 11% increase in the natural frequency. The mode shapes of the PEMFC provide insight into the maximum displacement exhibited as well as the stresses experienced by the material under various vibration conditions.

This content is only available via PDF.
You do not currently have access to this content.