This paper presents a study on the transport phenomena related to gas flow through fuel cell micro-channels, specifically the impact of dimensional scale on the order of 100 microns and below. Especially critical is the ability to experimentally verify model predictions, and this is made efficiently possible by the use of structural photopolymer (SU-8) to directly fabricate functional fuel cell micro-channels. The design and analysis components of this investigation apply 3-D multi-physics modeling to predict cell performance under micro-channel conditions. Interestingly, the model predicts that very small channels (specifically 100 microns and below) result in a significantly higher peak power density than larger counterparts. SU-8 micro-channels with different feature sizes have been integrated into fuel cell prototypes and tested for comparison against model predictions. The results not only demonstrate that the SU-8 channels with metal current collector show quite appreciable performance, but also provide experimental verification of the merits of channel miniaturization. As predicted, the performance in terms of peak power density increases as the feature size of the channel decreases, even though the pressure drop is higher in the more narrow channels. So it has been observed both theoretically and experimentally that cell performance shows an improving trend with micro-channels, and design optimization for miniature fuel cell provides a powerful method for increasing power density.
Skip Nav Destination
ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology
April 21–23, 2003
Rochester, New York, USA
Conference Sponsors:
- Electronic and Photonic Packaging Division
ISBN:
0-7918-3668-1
PROCEEDINGS PAPER
Investigation of Transport Phenomena in Micro Flow Channels for Miniature Fuel Cells
S. J. Lee,
S. J. Lee
San Jose State University, San Jose, CA
Search for other works by this author on:
F. B. Prinz
F. B. Prinz
Stanford University, Stanford, CA
Search for other works by this author on:
S. W. Cha
Stanford University, Stanford, CA
S. J. Lee
San Jose State University, San Jose, CA
Y. I. Park
Stanford University, Stanford, CA
F. B. Prinz
Stanford University, Stanford, CA
Paper No:
FUELCELL2003-1711, pp. 143-148; 6 pages
Published Online:
January 5, 2009
Citation
Cha, SW, Lee, SJ, Park, YI, & Prinz, FB. "Investigation of Transport Phenomena in Micro Flow Channels for Miniature Fuel Cells." Proceedings of the ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. 1st International Fuel Cell Science, Engineering and Technology Conference. Rochester, New York, USA. April 21–23, 2003. pp. 143-148. ASME. https://doi.org/10.1115/FUELCELL2003-1711
Download citation file:
7
Views
0
Citations
Related Proceedings Papers
Optimal Design of Hybrid Fuel Cell Vehicles
FUELCELL2006
Related Articles
Analysis and Optimization of Transient Response of Polymer Electrolyte Fuel Cells
J. Fuel Cell Sci. Technol (February,2015)
Numerical Modeling of Polymer Electrolyte Fuel Cells With Analytical and Experimental Validation
J. Electrochem. En. Conv. Stor (August,2019)
Air Cooling of Power Electronics Through Vertically Enhanced Manifold Microchannel Systems (VEMMS)
J. Heat Transfer (October,2021)
Related Chapters
Microstructure Evolution and Physics-Based Modeling
Ultrasonic Welding of Lithium-Ion Batteries
By Intuition, or by Design?
Air Engines: The History, Science, and Reality of the Perfect Engine
The Effect of the Annealing Schedule on Simulated Annealing for Function Optimization and Fuel Cell Design
Intelligent Engineering Systems through Artificial Neural Networks, Volume 20