Mechatronic systems are a combination of cooperative mechanical, electronics and control components. The high number of their components, their multi-physical aspect, the couplings between the different domains involved and the interacting design objectives makes the design task very tedious ad complex. Due to this inherent complexity, a concurrent systematic and multi-objective design thinking methodology is crucial to replace the often used sequential design approach that tends to deal with the different domains separately. In this research we present a new multi-criteria profile for mechatronic system performance evaluation in conceptual design stage. The newly introduced Mechatronic Multi-criteria Profile (MMP) includes various quantitative members such as intelligence, reliability, complexity, flexibility and cost. A nonlinear fuzzy integral called 2-additive Choquet Integral will be used for the aggregation of criteria and fitting the intuitive requirements for decision-making in the presence of interacting criteria. Finally, the effectiveness of the proposed method will be validated via a case study of designing a robotic visual servoing system.

This content is only available via PDF.
You do not currently have access to this content.