In this paper, we focus on the Variable-Speed (VS) stall control method, a relatively new idea, which offers a promising perspective for future applications. As with the classical Fixed-Speed (FS) stall method, the elimination of the pitch mechanism, lowers the capital cost and reduces maintenance expenses, while at the same time, allows for a more efficient and precise control of power production. We present an analysis focused on the aeroe-lastic dynamic response of wind turbine rotors operating on the Variable-Speed stall control method. We conducted a wide range of experiments to assess the effects of rapid variations on the rotor’s operational conditions, like sudden gusts. Various gust conditions were tested for different wind speeds, represented by pulses of different intensity, occurring suddenly in an otherwise constant wind regime. Results for the aeroelastic dynamics of the rotor’s response, and the frequency content of its vibrations, are reported and analyzed.

This content is only available via PDF.
You do not currently have access to this content.