The United States Military Academy has been charged with reaching Net Zero Energy consumption by 2020. Feasibility assessments to this point have neglected the field facilities used for military training, which are remote locations susceptible to power loss and subject to a higher rate structure for electricity than the rest of the installation. An energy security analysis methodology is described and applied to the training camps at West Point. This began with identifying the mission of the camps and critical power needs based on discussions with the customer, the Director of Cadet Military Training. Details of power and energy usage along with supply and delivery cost structure were provided by the utility and the facility Energy Manager. Conventional and renewable resource potentials were assessed to meet the load profile within financial constraints and funding opportunities unique to a federal government agency. The final recommendation is to incorporate three different technologies: a 50 kW photovoltaic solar system installed through a power purchase agreement, two small scale hydropower systems totaling 30 kW, and a lake based cooling system to provide air conditioning. The installation of these three systems would move the installation closer to the Net Zero Energy goal and lower the energy requirements to provide cooling. Altogether the proposed project would pay back in 16 years with an expected lifespan of 20–30 years. Batteries, generators, and pumped hydro were also examined as possible energy storage options and to shave the peak electrical load. However, the lack of on peak/off peak pricing made these options less viable. These recommendations will increase West Point’s energy security, progress towards the Net Zero Energy goal, and provide cost savings over current utility expenditures.
- Advanced Energy Systems Division
Energy Security Analysis for West Point Training Camps
Leemans, A, Baker, M, Tamm, G, Andrews, D, Johnson, E, Hickey, B, & Martins, N. "Energy Security Analysis for West Point Training Camps." Proceedings of the ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. Volume 2: Economic, Environmental, and Policy Aspects of Alternate Energy; Fuels and Infrastructure, Biofuels and Energy Storage; High Performance Buildings; Solar Buildings, Including Solar Climate Control/Heating/Cooling; Sustainable Cities and Communities, Including Transportation; Thermofluid Analysis of Energy Systems, Including Exergy and Thermoeconomics. Boston, Massachusetts, USA. June 30–July 2, 2014. V002T11A009. ASME. https://doi.org/10.1115/ES2014-6682
Download citation file: