Proper light penetration is an essential design consideration for effective algae growth in column photobioreactors. This research focuses on the placement of light guides within a photobioreactor (PBR), and the effect they have on heat transfer, mass transfer, bubble and fluid flow patterns, and mixing. Studies have been done on a rectangular column photobioreactor (34.29 cm long × 15.25 cm wide × 34.29 cm tall) with two light panels along the front and back of the PBR. A bubble sparger is placed along the center of the bottom length of the PBR with both height and width of 1.27 cm and a length of 33.02 cm. Different configurations and numbers of light guides (1.27 cm diameter) running horizontally from the front to the back of the PBR are modeled using the Computational Fluid Dynamics (CFD) software Star-CCM+. It is hypothesized that the addition of light guides will change the flow pattern but not adversely affect the heat or mass transfer of the carbon dioxide bubbles within the PBR. Potential concerns of light guide placement include inhibiting the flow of the carbon dioxide bubbles or creating regions of high temperature, which could potentially kill the algae. Benefits of light guides include increased light penetration and photosynthesis within the PBR. Five different light guide setups are tested with the carbon dioxide bubbles and water modeled as a turbulent multiphase gas-liquid mixture. The near wall standard k-epsilon two layer turbulence model was used, as it takes into account the viscosity influences between the liquid and gaseous phases. Eight different bubble volumetric flow rates are simulated. The bubble flow patterns, temperature distribution, Nusselt number, Reynolds number, and velocity are all analyzed. The results indicate square arrays of light guides give the most desirable velocity distribution, with less area of zero velocity compared to the staggered light guide setup. Temperature distribution is generally even for all configurations of light guides.

This content is only available via PDF.
You do not currently have access to this content.