Latent thermal energy storage (LTES) system offers high energy storage density and nearly isothermal operation for concentrating solar power generation. However, the low thermal conductivity possessed by the phase change material (PCM) used in LTES system limits the heat transfer rates. Utilizing thermosyphons to charge or discharge a LTES system offers a promising engineering solution to compensate for the low thermal conductivity of the PCM. The present work numerically investigates the enhancement in the thermal performance of charging and discharging process of LTES system by embedding thermosyphons. A transient, computational analysis of the LTES system with embedded thermosyphons is performed for both charging and discharging cycles. The influence of the design configuration of the system and the arrangement of the thermosyphons on the charge and discharge performance of the LTES installed in a concentrating solar power plant (CSP) is analyzed to identify configurations that lead to improved effectiveness.

This content is only available via PDF.
You do not currently have access to this content.