Battery state estimation (BSE) is one of the most important design aspects of an electrified propulsion system. It includes important functions such as state-of-charge estimation which is essentially for the energy management system. A successful and practical approach to battery state estimation is via real time battery model parameter identification. In this approach, a low-order control-oriented model is used to approximate the battery dynamics. Then a recursive least squares is used to identify the model parameters in real time. Despite its good properties, this approach can fail to identify the optimal model parameters if the underlying system contains time constants that are very far apart in terms of time-scale. Unfortunately this is the case for typical lithium-ion batteries especially at lower temperatures. In this paper, a modified battery model parameter identification method is proposed where the slower and faster battery dynamics are identified separately. The battery impedance information is used to guide how to separate the slower and faster dynamics, though not used specifically in the identification algorithm. This modified algorithm is still based on least squares and can be implemented in real time using recursive least squares. Laboratory data is used to demonstrate the validity of this method.

This content is only available via PDF.
You do not currently have access to this content.