Veterans with spinal cord injury (SCI) are at high risk for developing debilitating pressure injuries, particularly to their seated areas (e.g. coccyx, sacral and gluteal) [1]. To prevent development of a pressure injury the Veteran with SCI is encouraged to invoke multiple prevention strategies [2]. One recommended prevention strategy is to conduct twice daily skin self-screenings. Skin self-screening is usually conducted in the bed, prior to arising in the morning and prior to sleep in the evening. The current method to conduct skin self-screening utilizes a mirror at the end of a long handle. The Veteran with SCI examines at-risk areas for changes in their skin integrity such as discoloration, swelling, or changes in skin texture. This method can take up to 20 minutes to complete. In the event there is a change to skin integrity, the pressure injury prevention protocol advises the Veteran with SCI to off-load that particular area for at least 24 hours [3]. Further, he/she is advised to consult with their skin specialist if the area does not resolve to normal color or texture within that next 24 hour period. The consequences of ignoring an early stage pressure injury can be serious e.g. weeks to months of hospitalization attempting to heal the injury, tens to hundreds of thousands of dollars in healthcare costs, possible surgery to close the wound and possibly death [4].
Informal interviews with Veterans with SCI clarified and validated that conducting skin screening with the mirror could be very challenging due to barriers such as: not having a baseline image to compare to; the mirror image not being viewable to the user due to lack of user flexibility or body habitus; the mirror does not easily allow a complete view of all the at-risk areas; the user not being able to discern what he/she is actually viewing possibly due to mirror image distortion and limited visual acuity.
The need for a better skin self-screening device was evidenced by the advanced pressure injuries Veterans presented to their healthcare providers. Finding a pressure injury in the early stages of development and intervening immediately, such as repositioning, can improve the trajectory of the injury [5]. Therefore the project goal was to offer a better tool for and improve the efficacy of skin self-screening for the Veterans with SCI. To overcome the identified barriers, our team of VA clinicians and engineers of the Minneapolis Adaptive Design & Engineering (MADE) program invented such a device at the Minneapolis VA. This paper presents the patient centered iterative process that was used to develop a skin self-screening device and the future directions for this technology.