Newest Issue

Research Papers

J. Sol. Energy Eng. 2019;142(1):011001-011001-5. doi:10.1115/1.4044059.

Thin-film grating coatings are proposed for smart windows to angular selective filtering of solar radiation. The gratings are formed by absorptive, reflective, or scattering parallel strips (made of chromogenic or other materials) alternating with directionally transmissive strips (untreated surface of pure glass) on two surfaces of the window pane(s). The smart window with grating optical filter has angular selective light transmission and partially or completely blocks the direct solar radiation in a preset angular range and transmits the scattered and reflected radiation without using the daylight redistribution devices. The results of numerical simulation and experimental confirmation of optimum slope angle of the strips on the pane(s), their widths, and relative position on two surfaces to minimize the directional light transmission of the window at the preset date and time of day taking into account orientation of the window to the cardinal, the latitude of the building, and the seasonal and daily distribution of the solar radiation intensity are demonstrated.

Commentary by Dr. Valentin Fuster
J. Sol. Energy Eng. 2019;142(1):011002-011002-9. doi:10.1115/1.4044125.

The photovoltaic panel is characterized by a unique point called the maximum power point (MPP) where the panel produces its maximum power. However, this point is highly influenced by the weather conditions and the fluctuation of load which drop the efficiency of the photovoltaic system. Therefore, the insertion of the maximum power point tracking (MPPT) is compulsory to track the maximum power of the panel. The approach adopted in this paper is based on combining the strengths of two maximum power point tracking techniques. As a result, an efficient maximum power point tracking method is obtained. It leads to an accurate determination of the MPP during different situations of climatic conditions and load. To validate the effectiveness of the proposed MPPT method, it has been simulated in matlab/simulink under different conditions.

Commentary by Dr. Valentin Fuster
J. Sol. Energy Eng. 2019;142(1):011003-011003-10. doi:10.1115/1.4044127.

Solar air heaters (SAHs) are the simplest form of nonconcentrating thermal collectors. SAHs utilize solar thermal energy to increase the temperature of air for thermal applications of less than 80 °C. The energy efficiency of SAHs is significantly low due to poor convective heat transfer between the absorber and the air medium. In this present study, it is aimed to increase the convective heat transfer by modifying the absorber and the type of air flow inside the duct. Experimental studies were performed to study about the energy and exergy efficiencies of SAH with the absorber of longitudinal circular fins. The thermal analysis of the SAH is evaluated for five mass flow rates of 30, 45, 60, 75, and 90 kg/h m2 flowing inside the duct of thickness 100 mm. The impact of the flow rate on the absorber and air temperature, temperature difference (ΔT), energy and exergy efficiencies, irreversibility, improvement potential, sustainability, and CO2 reduction potential is studied. The experimental results show that the first and second laws of thermodynamic efficiency increase from 44.13% to 56.98% and from 24.98% to 36.62% by increasing the flow rate from 30 to 90 kg/h m2. The results conclude that the air flow duration inside the duct plays an important role in efficiency of the solar air heater. Therefore, lower flow rate is preferred to achieve maximum outlet air temperature and temperature difference.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In