0
Research Papers

Inert and Reactive Oxide Particles for High-Temperature Thermal Energy Capture and Storage for Concentrating Solar Power

[+] Author and Article Information
Gregory S. Jackson

Professor
Department of Mechanical Engineering,
Colorado School of Mines,
Golden, CO 80401
e-mail: gsjackso@mines.edu

Luca Imponenti

Colorado School of Mines,
Golden, CO 80401
e-mail: limponen@mymail.mines.edu

Kevin J. Albrecht

Concentrating Solar Technologies,
Sandia National Laboratories,
Albuquerque, NM 87111-1127
e-mail: kalbrec@sandia.gov

Daniel C. Miller

Colorado School of Mines,
Golden, CO 80401
e-mail: dawuda@gmail.com

Robert J. Braun

Professor
Department of Mechanical Engineering,
Colorado School of Mines,
Golden, CO 80401
e-mail: rbraun@mines.edu

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received October 10, 2018; final manuscript received November 21, 2018; published online January 8, 2019. Guest Editors: Tatsuya Kodama, Christian Sattler, Nathan Siegel, Ellen Stechel.

J. Sol. Energy Eng 141(2), 021016 (Jan 08, 2019) (14 pages) Paper No: SOL-18-1467; doi: 10.1115/1.4042128 History: Received October 10, 2018; Revised November 21, 2018

Oxide particles have potential as robust heat transfer and thermal energy storage (TES) media for concentrating solar power (CSP). Particles of low-cost, inert oxides such as alumina and/or silica offer an effective, noncorrosive means of storing sensible energy at temperatures above 1000 °C. However, for TES subsystems coupled to high-efficiency, supercritical-CO2 cycles with low temperature differences for heat addition, the limited specific TES (in kJ kg−1) of inert oxides requires large mass flow rates for capture and total mass for storage. Alternatively, reactive oxides may provide higher specific energy storage (approaching 2 or more times the inert oxides) through adding endothermic reduction. Chemical energy storage through reduction can benefit from low oxygen partial pressures (PO2) sweep-gas flows that add complexity, cost, and balance of plant loads to the TES subsystem. This paper compares reactive oxides, with a focus on Sr-doped CaMnO3–δ perovskites, to low-cost alumina-silica particles for energy capture and storage media in CSP applications. For solar energy capture, an indirect particle receiver based on a narrow-channel, counterflow fluidized bed provides a framework for comparing the inert and reactive particles as a heat transfer media. Low-PO2 sweep gas flows for promoting reduction impact the techno-economic viability of TES subsystems based on reactive perovskites relative to those using inert oxide particles. This paper provides insights as to when reactive perovskites may be advantageous for TES subsystems in next-generation CSP plants.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mehos, M. , Jorgenson, J. , Denholm, P. , and Turchi, C. , 2015, “ An Assessment of the Net Value of CSP Systems Integrated With Thermal Energy Storage,” Energy Procedia, 69, pp. 2060–2071. [CrossRef]
Forrester, J. , 2014, “ The Value of CSP With Thermal Energy Storage in Providing Grid Stability,” Energy Procedia, 49, pp. 1632–1641. [CrossRef]
Du, E. , Zhang, N. , Hodge, B.-M. , Kang, C. , Kroposki, B. , and Xia, Q. , 2018, “ Economic Justification of Concentrating Solar Power in High Renewable Energy Penetrated Power Systems,” Appl. Energy, 222, pp. 649–661. [CrossRef]
Siegel, N. , Gross, M. , Ho, C. , Phan, T. , and Yuan, J. , 2014, “ Physical Properties of Solid Particle Thermal Energy Storage Media for Concentrating Solar Power Applications,” Energy Procedia, 49, pp. 1015–1023. [CrossRef]
Stein, W. , and Buck, R. , 2017, “ Advanced Power Cycles for Concentrated Solar Power,” Sol. Energy, 152, pp. 91–105. [CrossRef]
Turchi, C. S. , Vidal, J. , and Bauer, M. , 2018, “ Molten Salt Power Towers Operating at 600–650 Degrees C: Salt Selection and Cost Benefits,” Sol. Energy, 164, pp. 38–46. [CrossRef]
Bauer, T. , Pfleger, N. , Breidenbach, N. , Eck, M. , Laing, D. , and Kaesche, S. , 2013, “ Material Aspects of Solar Salt for Sensible Heat Storage,” Appl. Energy, 111, pp. 1114–1119. [CrossRef]
Fernández, A. G. , Galleguillos, H. , Fuentealba, E. , and Pérez, F. J. , 2015, “ Thermal Characterization of Hitec Molten Salt for Energy Storage in Solar Linear Concentrated Technology,” J. Therm. Anal. Calorim., 122(1), pp. 3–9. [CrossRef]
Ting Wu, Y. , Ren, N. , Wang, T. , and Fang Ma, C. , 2011, “ Experimental Study on Optimized Composition of Mixed Carbonate Salt for Sensible Heat Storage in Solar Thermal Power Plant,” Sol. Energy, 85(9), pp. 1957–1966. [CrossRef]
Gomez-Vidal, J. C. , Noel, J. , and Weber, J. , 2016, “ Corrosion Evaluation of Alloys and MCrAlX Coatings in Molten Carbonates for Thermal Solar Applications,” Sol. Energy Mater. Sol. Cells, 157, pp. 517–525. [CrossRef]
Myers, P. D. , and Goswami, D. Y. , 2016, “ Thermal Energy Storage Using Chloride Salts and Their Eutectics,” Appl. Therm. Eng., 109, pp. 889–900. [CrossRef]
Du, L. , Ding, J. , Tian, H. , Wang, W. , Wei, X. , and Song, M. , 2017, “ Thermal Properties and Thermal Stability of the Ternary Eutectic Salt NaCl–CaCl2–MgCl2 Used in High-Temperature Thermal Energy Storage Process,” Appl. Energy, 204, pp. 1225–1230. [CrossRef]
Liu, B. , Wei, X. , Wang, W. , Lu, J. , and Ding, J. , 2017, “ Corrosion Behavior of Ni-Based Alloys in Molten NaCl–CaCl2–MgCl2 Eutectic Salt for Concentrating Solar Power,” Sol. Energy Mater. Sol. Cells, 170, pp. 77–86. [CrossRef]
Ho, C. K. , 2017, “ Advances in Central Receivers for Concentrating Solar Applications,” Sol. Energy, 152(SI), pp. 38–56. [CrossRef]
Mehos, M. , Turchi, C. , Vidal, J. , Wagner, M. , Ma, Z. , Ho, C. , Kolb, W. , Andraka, C. , and Kruizenga, A. , 2017, “ Concentrating Solar Power Gen3 Demonstration Roadmap,” National Renewable Energy Laboratory (NREL), Golden, CO, Report No. NREL/TP-5500-67465. https://www.nrel.gov/docs/fy17osti/67464.pdf
Gomez-Vidal, J. C. , and Tirawat, R. , 2016, “ Corrosion of Alloys in a Chloride Molten Salt (NaCl–LiCl) for Solar Thermal Technologies,” Sol. Energy Mater. Sol. Cells, 157, pp. 234–244. [CrossRef]
de Miguel, M. T. , Encinas-Sanchez, V. , Lasanta, M. I. , Garcia-Martin, G. , and Perez, F. J. , 2016, “ Corrosion Resistance of HR3C to a Carbonate Molten Salt for Energy Storage Applications in CSP Plants,” Sol. Energy Mater. Sol. Cells, 157, pp. 966–972. [CrossRef]
Niedermeier, K. , Marocco, L. , Flesch, J. , Mohan, G. , Coventry, J. , and Wetzel, T. , 2018, “ Performance of Molten Sodium vs. Molten Salts in a Packed Bed Thermal Energy Storage,” Appl. Therm. Eng., 141, pp. 368–377. [CrossRef]
Khare, S. , Dell'Amico, M. , Knight, C. , and McGarry, S. , 2013, “ Selection of Materials for High Temperature Sensible Energy Storage,” Sol. Energy Mater. Sol. Cells, 115, pp. 114–122. [CrossRef]
Ho, C. K. , 2016, “ A Review of High-Temperature Particle Receivers for Concentrating Solar Power,” Appl. Therm. Eng., 109, pp. 958–969. [CrossRef]
Tan, T. D. , and Chen, Y. T. , 2010, “ Review of Study on Solid Particle Solar Receivers,” Renewable Sustainable Energy Rev., 14(1), pp. 265–276. [CrossRef]
Baumann, T. , and Zunft, S. , 2015, “ Properties of Granular Materials as Heat Transfer and Storage Medium in CSP Application,” Sol. Energy Mater. Sol. Cells, 143, pp. 38–47. [CrossRef]
Diago, M. , Iniesta, A. C. , Soum-Glaude, A. , and Calvet, N. , 2018, “ Characterization of Desert Sand to Be Used as a High-Temperature Thermal Energy Storage Medium in Particle Solar Receiver Technology,” Appl. Energy, 216, pp. 402–413. [CrossRef]
Ma, Z. , Mehos, M. , Glatzmaier, G. , and Sakadjian, B. , 2015, “ Development of a Concentrating Solar Power System Using Fluidized-Bed Technology for Thermal Energy Conversion and Solid Particles for Thermal Energy Storage,” Energy Procedia, 69, pp. 1349–1359. [CrossRef]
Nigay, P.-M. , Nzihou, A. , White, C. E. , and Soboyejo, W. O. , 2017, “ Structure and Properties of Clay Ceramics for Thermal Energy Storage,” J. Am. Ceram. Soc., 100(10), pp. 4748–4759. [CrossRef]
Li, B. , and Ju, F. , 2018, “ Thermal Stability of Granite for High Temperature Thermal Energy Storage in Concentrating Solar Power Plants,” Appl. Therm. Eng., 138, pp. 409–416. [CrossRef]
Anderson, R. , Shiri, S. , Bindra, H. , and Morris, J. F. , 2014, “ Experimental Results and Modeling of Energy Storage and Recovery in a Packed Bed of Alumina Particles,” Appl. Energy, 119, pp. 521–529. [CrossRef]
Miller, D. C. , Pfutzner, C. J. , and Jackson, G. S. , 2018, “ Heat Transfer in Counterflow Fluidized Bed of Oxide Particles for Thermal Energy Storage,” Int. J. Heat Mass Transfer, 126(B), pp. 730–745. [CrossRef]
Siegel, N. P. , Gross, M. D. , and Coury, R. , 2015, “ The Development of Direct Absorption and Storage Media for Falling Particle Solar Central Receivers,” ASME J. Sol. Energy Eng., 137(4), p. 041003. [CrossRef]
Ho, C. K. , Christian, J. M. , Romano, D. , Yellowhair, J. , Siegel, N. , Savoldi, L. , and Zanino, R. , 2017, “ Characterization of Particle Flow in a Free-Falling Solar Particle Receiver,” ASME J. Sol. Energy Eng., 139(2), p. 021011.
Martinek, J. , and Ma, Z. , 2015, “ Granular Flow and Heat-Transfer Study in a Near-Blackbody Enclosed Particle Receiver,” ASME J. Sol. Energy Eng., 137(5), p. 051008.
Mehos, M. , Turchi, C. , Jorgenson, J. , Denholm, P. , Ho, C. , and Armijo, K. , 2016, “ On the Path to Sunshot: Advancing Concentrating Solar Power Technology, Performance, and Dispatchability,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-5500-65688.
Turchi, C. S. , Ma, Z. , Neises, T. W. , and Wagner, M. J. , 2013, “ Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems,” ASME J. Sol. Energy Eng., 135(4), p. 041007. [CrossRef]
General Atomics, 2011, “ Thermochemical Heat Storage for Concentrated Solar Power,” U. S. Department of Energy, Washington, DC, Report No. DE-FG36-08GO18145.
Schrader, A. J. , De Dominicis, G. , Schieber, G. L. , and Loutzenhiser, P. G. , 2017, “ Solar Electricity Via an Air Brayton Cycle With an Integrated Two-Step Thermochemical Cycle for Heat Storage Based on Co3O4/COO Redox Reactions—III: Solar Thermochemical Reactor Design and Modeling,” Sol. Energy, 150, pp. 584–595. [CrossRef]
Agrafiotis, C. , Roeb, M. , Schmuecker, M. , and Sattler, C. , 2014, “ Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 1: Testing of Cobalt Oxide-Based Powders,” Sol. Energy, 102, pp. 189–211. [CrossRef]
Agrafiotis, C. , Roeb, M. , and Sattler, C. , 2016, “ Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 4: Screening of Oxides for Use in Cascaded Thermochemical Storage Concepts,” Sol. Energy, 139, pp. 695–710. [CrossRef]
Carrillo, A. J. , Serrano, D. P. , Pizarro, P. , and Coronado, J. M. , 2014, “ Thermochemical Heat Storage Based on the Mn2O3/Mn3O4 Redox Couple: Influence of the Initial Particle Size on the Morphological Evolution and Cyclability,” J. Mater. Chem. A, 2(45), pp. 19435–19443. [CrossRef]
Block, T. , and Schmücker, M. , 2016, “ Metal Oxides for Thermochemical Energy Storage: A Comparison of Several Metal Oxide Systems,” Sol. Energy, 126, pp. 195–207. [CrossRef]
Bulfin, B. , Vieten, J. , Agrafiotis, C. , Roeb, M. , and Sattler, C. , 2017, “ Applications and Limitations of Two Step Metal Oxide Thermochemical Redox Cycles—A Review,” J. Mater. Chem. A, 5(36), pp. 18951–18966. [CrossRef]
Carrillo, A. J. , Serrano, D. P. , Pizarro, P. , and Coronado, J. M. , 2015, “ Improving the Thermochemical Energy Storage Performance of the Mn2O3/Mn3O4 Redox Couple by the Incorporation of Iron,” ChemSusChem, 8(11), pp. 1947–1954. [CrossRef] [PubMed]
Carrillo, A. J. , Serrano, D. P. , Pizarro, P. , and Coronado, J. M. , 2016, “ Understanding Redox Kinetics of Iron-Doped Manganese Oxides for High Temperature Thermochemical Energy Storage,” J. Phys. Chem. C, 120(49), pp. 27800–27812. [CrossRef]
Wokon, M. , Kohzer, A. , and Linder, M. , 2017, “ Investigations on Thermochemical Energy Storage Based on Technical Grade Manganese-Iron Oxide in a Lab-Scale Packed Bed Reactor,” Sol. Energy, 153, pp. 200–214. [CrossRef]
Wokon, M. , Block, T. , Nicolai, S. , Linder, M. , and Schmuecker, M. , 2017, “ Thermodynamic and Kinetic Investigation of a Technical Grade Manganese-Iron Binary Oxide for Thermochemical Energy Storage,” Sol. Energy, 153, pp. 471–485. [CrossRef]
Agrafiotis, C. , Block, T. , Senholdt, M. , Tescari, S. , Roeb, M. , and Sattler, C. , 2017, “ Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 6: Testing of Mn-Based Combined Oxides and Porous Structures,” Sol. Energy, 149, pp. 227–244. [CrossRef]
Babiniec, S. M. , Coker, E. N. , Miller, J. E. , and Ambrosini, A. , 2015, “ Investigation of LaxSr1–xCoyM1–yO3–δ (M = Mn, Fe) Perovskite Materials as Thermochemical Energy Storage Media,” Sol. Energy, 118, pp. 451–459. [CrossRef]
Albrecht, K. J. , Jackson, G. S. , and Braun, R. J. , 2016, “ Thermodynamically Consistent Modeling of Redox-Stable Perovskite Oxides for Thermochemical Energy Conversion and Storage,” Appl. Energy, 165, pp. 285–296. [CrossRef]
Imponenti, L. , Albrecht, K. J. , Braun, R. J. , and Jackson, G. S. , 2016, “ Measuring Thermochemical Energy Storage Capacity With Redox Cycles of Doped-CaMnO3,” ECS Trans., 72(7), pp. 11–22. [CrossRef]
Babiniec, S. M. , Coker, E. N. , Miller, J. E. , and Ambrosini, A. , 2016, “ Doped Calcium Manganites for Advanced High-Temperature Thermochemical Energy Storage,” Int. J. Energy Res., 40(2), pp. 280–284. [CrossRef]
Imponenti, L. , Albrecht, K. J. , Wands, J. W. , Sanders, M. D. , and Jackson, G. S. , 2017, “ Thermochemical Energy Storage in Strontium-Doped Calcium Manganites for Concentrating Solar Power Applications,” Sol. Energy, 151, pp. 1–13. [CrossRef]
Imponenti, L. , Albrecht, K. J. , Kharait, R. , Sanders, M. D. , and Jackson, G. S. , 2018, “ Redox Cycles With Doped Calcium Manganites for Thermochemical Energy Storage to 1000∘c,” Appl. Energy, 230, pp. 1–18. [CrossRef]
Bulfin, B. , Vieten, J. , Starr, D. E. , Azarpira, A. , Zachaeus, C. , Haevecker, M. , Skorupska, K. , Schmuecker, M. , Roeb, M. , and Sattler, C. , 2017, “ Redox Chemistry of CaMnO3 and Ca0.8Sr0.2MnO3 Oxygen Storage Perovskites,” J. Mater. Chem. A, 5(17), pp. 7912–7919. [CrossRef]
Bakken, E. , Norby, T. , and Stølen, S. , 2005, “ Nonstoichiometry and Reductive Decomposition of CaMnO3–δ,” Solid State Ionics, 176(1–2), pp. 217–223. [CrossRef]
Leonidova, E. I. , Leonidov, I. A. , Patrakeev, M. V. , and Kozhevnikov, V. L. , 2011, “ Oxygen Non-Stoichiometry, High-Temperature Properties, and Phase Diagram of CaMnO3–δ,” J. Solid State Electrochem., 15(5), pp. 1071–1075. [CrossRef]
Albrecht, K. J. , Jackson, G. S. , and Braun, R. J. , 2018, “ Evaluating Thermodynamic Performance Limits of Thermochemical Energy Storage Subsystems Using Reactive Perovskite Oxide Particles for Concentrating Solar Power,” Sol. Energy, 167, pp. 179–193. [CrossRef]
Domalski, E. S. , and Hearing, E. D. , 2018, Condensed Phase Heat Capacity Data in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P. J. Linstrom and W. G. Mallard, eds., National Institute of Standards and Technology, Gaithersburg, MD.
Jacob, K. T. , Kumar, A. , Rajitha, G. , and Waseda, Y. , 2011, “ Thermodynamic Data for Mn3O4, Mn2O3 And MnO2,” High Temp. Mater. Processes, 30(4–5), pp. 459–472.
Diago, M. , Iniesta, A. C. , Falcoz, Q. , Shamim, T. , and Calvet, N. , 2015, “ Energy and Exergy Analysis of a Novel Gravity-Fed Solid Particle Solar Receiver,” Energy Procedia, 69, pp. 812–821. [CrossRef]
Charvin, P. , Abanades, S. , Flamant, G. , and Lemort, F. , 2007, “ Two-Step Water Splitting Thermochemical Cycle Based on Iron Oxide Redox Pair for Solar Hydrogen Production,” Energy, 32(7), pp. 1124–1133. [CrossRef]
Scheffe, J. R. , McDaniel, A. H. , Allendorf, M. D. , and Weimer, A. W. , 2013, “ Kinetics and Mechanism of Solar-Thermochemical H2 Production by Oxidation of a Cobalt Ferrite-Zirconia Composite,” Energy Environ. Sci., 6(3), pp. 963–973. [CrossRef]
Marugan, J. , Botas, J. A. , Martin, M. , Molina, R. , and Herradon, C. , 2012, “ Study of the First Step of the Mn2O3/Mno Thermochemical Cycle for Solar Hydrogen Production,” Int. J. Hydrogen Energy, 37(8), pp. 7017–7025. [CrossRef]
Singh, A. , Tescari, S. , Lantin, G. , Agrafiotis, C. , Roeb, M. , and Sattler, C. , 2017, “ Solar Thermochemical Heat Storage Via the Co3O4/COO Looping Cycle: Storage Reactor Modelling and Experimental Validation,” Sol. Energy, 144, pp. 453–465. [CrossRef]
Wu, S. , Zhou, C. , Doroodchi, E. , Nellore, R. , and Moghtaderi, B. , 2018, “ A Review on High-Temperature Thermochemical Energy Storage Based on Metal Oxides Redox Cycle,” Energy Convers. Manage., 168, pp. 421–453. [CrossRef]
Agrafiotis, C. , Roeb, M. , Schmuecker, M. , and Sattler, C. , 2015, “ Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 2: Redox Oxide-Coated Porous Ceramic Structures as Integrated Thermochemical Reactors/Heat Exchangers,” Sol. Energy, 114, pp. 440–458. [CrossRef]
Agrafiotis, C. , Becker, A. , Roeb, M. , and Sattler, C. , 2016, “ Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 5: Testing of Porous Ceramic Honeycomb and Foam Cascades Based on Cobalt and Manganese Oxides for Hybrid Sensible/Thermochemical Heat Storage,” Sol. Energy, 139, pp. 676–694. [CrossRef]
Karagiannakis, G. , Pagkoura, C. , Halevas, E. , Baltzopoulou, P. , and Konstandopoulos, A. G. , 2016, “ Cobalt/Cobaltous Oxide Based Honeycombs for Thermochemical Heat Storage in Future Concentrated Solar Power Installations: Multi-Cyclic Assessment and Semi-Quantitative Heat Effects Estimations,” Sol. Energy, 133, pp. 394–407. [CrossRef]
Tescari, S. , Singh, A. , Agrafiotis, C. , de Oliveira, L. , Breuer, S. , Schloegl-Knothe, B. , Roeb, M. , and Sattler, C. , 2017, “ Experimental Evaluation of a Pilot-Scale Thermochemical Storage System for a Concentrated Solar Power Plant,” Appl. Energy, 189, pp. 66–75. [CrossRef]
Carrillo, A. J. , Moya, J. , Bayon, A. , Jana, P. , de la Pena O'Shea, V. A. , Romero, M. , Gonzalez-Aguilar, J. , Serrano, D. P. , Pizarro, P. , and Coronado, J. M. , 2014, “ Thermochemical Energy Storage at High Temperature Via Redox Cycles of Mn and Co Oxides: Pure Oxides Versus Mixed Ones,” Sol. Energy Mater. Sol. Cells, 123, pp. 47–57. [CrossRef]
Andre, L. , Abanades, S. , and Cassayre, L. , 2017, “ High-Temperature Thermochemical Energy Storage Based on Redox Reactions Using Co-Fe and Mn-Fe Mixed Metal Oxides,” J. Solid State Chem., 253, pp. 6–14. [CrossRef]
Ryden, M. , Lyngfelt, A. , and Mattisson, T. , 2011, “ CaMn0.875Ti0.125O3 as Oxygen Carrier for Chemical-Looping Combustion With Oxygen Uncoupling (CLOU)-Experiments in a Continuously Operating Fluidized-Bed Reactor System,” Int. J. Greenhouse Gas Control, 5(2), pp. 356–366. [CrossRef]
Hallberg, P. , Jing, D. Z. , Ryden, M. , Mattisson, T. , and Lyngfelt, A. , 2013, “ Chemical Looping Combustion and Chemical Looping With Oxygen Uncoupling Experiments in a Batch Reactor Using Spray-Dried CaMn1–xMxO3–δ (M = Ti, Fe, Mg) Particles as Oxygen Carriers,” Energy Fuels, 27(3), pp. 1473–1481. [CrossRef]
Arjmand, M. , Hedayati, A. , Azad, A.-M. , Leion, H. , Ryden, M. , and Mattisson, T. , 2013, “ CaxLa1–xMn1–yMyO3–δ (M = Mg, Ti, Fe, or Cu) as Oxygen Carriers for Chemical-Looping With Oxygen Uncoupling (CLOU),” Energy Fuels, 27(8), pp. 4097–4107. [CrossRef]
Pishahang, M. , Larring, Y. , McCann, M. , and Bredesen, R. , 2014, “ Ca0.9Mn0.5Ti0.5O3–δ: A Suitable Oxygen Carrier Material for Fixed-Bed Chemical Looping Combustion Under Syngas Conditions,” Ind. Eng. Chem. Res., 53(26), pp. 10549–10556. [CrossRef]
Galinsky, N. , Sendi, M. , Bowers, L. , and Li, F. , 2016, “ CaMn1–xBxO3–δ (B = Al, V, Fe, Co, and Ni) Perovskite Based Oxygen Carriers for Chemical Looping With Oxygen Uncoupling (CLOU),” Appl. Energy, 174, pp. 80–87. [CrossRef]
Pishahang, M. , Larring, Y. , Sunding, M. , Jacobs, M. , and Snijkers, F. , 2016, “ Performance of Perovskite-Type Oxides as Oxygen-Carrier Materials for Chemical Looping Combustion in the Presence of H2S,” Energy Technol., 4(10), pp. 1305–1316. [CrossRef]
Kharait, R. A. , 2015, “ Thermodynamics of Doped Calcium Manganite for Thermochemical Energy Storage in Concentrated Solar Power Plants,” Master's thesis, Colorado School of Mines, Golden, CO. https://mountainscholar.org/bitstream/handle/11124/20114/Kharait_mines_0052N_10792.pdf?sequence=1
Goldyreva, E. I. , Leonidov, I. A. , Patrakeev, M. V. , Chukin, A. V. , Leonidov, I. I. , and Kozhevnikov, V. L. , 2015, “ Oxygen Nonstoichiometry and Defect Equilibrium in Electron Doped Ca0.6–ySr0.4LayMnO3–δ,” J. Alloys Compd., 638, pp. 44–49. [CrossRef]
Muroyama, A. P. , Schrader, A. J. , and Loutzenhiser, P. G. , 2015, “ Solar Electricity Via an Air Brayton Cycle With an Integrated Two-Step Thermochemical Cycle for Heat Storage Based on Co3O4/COO Redox Reactions—II: Kinetic Analyses,” Sol. Energy, 122, pp. 409–418. [CrossRef]
Morin, F. , and Dieckmann, R. , 1990, “ True Chemical Diffusivity and Surface Reactivity of Cobaltous Oxide,” J. Phys. Chem. Solids, 51(3), pp. 283–288. [CrossRef]
Hutchings, K. , Wilson, M. , Larsen, P. , and Cutler, R. , 2006, “ Kinetic and Thermodynamic Considerations for Oxygen Absorption/Desorption Using Cobalt Oxide,” Solid State Ionics, 177(1–2), pp. 45–51. [CrossRef]
Abdelmotalib, H. M. , Kim, J. S. , and Im, I.-T. , 2017, “ A Study on Heat Transfer in a Conical Fluidized-Bed Reactor With an Immersed Cylindrical Heater,” Numer. Heat Transfer Part A—Appl., 71(8), pp. 855–866. [CrossRef]
De Souza, R. A. , Kilner, J. A. , and Walker, J. F. , 2000, “ A SIMS Study of Oxygen Tracer Diffusion and Surface Exchange in La0.8Sr0.2MnO3+Delta,” Mater. Lett., 43(1–2), pp. 43–52. [CrossRef]
Petitjean, M. , Caboche, G. , Siebert, E. , Dessemond, L. , and Dufour, L. , 2005, “( La0.8Sr0.2)(Mn1–yFey)O−3 +/-Delta Oxides for IT SOFC Cathode Materials? Electrical and Ionic Transport Properties,” J. Electrochem. Soc., 25(12), pp. 2651–2654.
Albrecht, K. J. , 2016, “ Multiscale Modeling and Experimental Interpretation of Perovskite Oxide Materials in Thermochemical Energy Storage and Conversion for Application in Concentrating Solar Power,” Ph.D. thesis, Colorado School of Mines, Golden, CO. https://mountainscholar.org/handle/11124/170612
Imponenti, L. , 2018, “ Redox Cycles With Doped Calcium Manganites for High-Temperature Thermochemical Energy Storage in Concentrating Solar Power,” Ph.D. thesis, Colorado School of Mines, Golden, CO.
Calderon, A. , Palacios, A. , Barreneche, C. , Segarra, M. , Prieto, C. , Rodriguez-Sanchez, A. , and Ines Fernandez, A. , 2018, “ High Temperature Systems Using Solid Particles as TES and HTF Material: A Review,” Appl. Energy, 213, pp. 100–111. [CrossRef]
Albrecht, K. J. , and Braun, R. J. , 2015, “ Thermodynamic Analysis of Non-Stoichiometric Perovskites as a Heat Transfer Fluid for Thermochemical Energy Storage in Concentrated Solar Power,” ASME Paper No. ES2015-49409.
Kim, K. , Siegel, N. , Kolb, G. , Rangaswamy, V. , and Moujaes, S. F. , 2009, “ A Study of Solid Particle Flow Characterization in Solar Particle Receiver,” Sol. Energy, 83(10), pp. 1784–1793. [CrossRef]
Siegel, N. P. , Ho, C. K. , Khalsa, S. S. , and Kolb, G. J. , 2010, “ Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation,” ASME J. Sol. Energy Eng., 132(2), p. 021008.
Gobereit, B. , Amsbeck, L. , Buck, R. , Pitz-Paal, R. , Roeger, M. , and Mueller-Steinhagen, H. , 2015, “ Assessment of a Falling Solid Particle Receiver With Numerical Simulation,” Sol. Energy, 115, pp. 505–517. [CrossRef]
Ma, Z. , Glatzmaier, G. , and Mehos, M. , 2014, “ Development of Solid Particle Thermal Energy Storage for Concentrating Solar Power Plants That Use Fluidized Bed Technology,” Energy Procedia, 49, pp. 898–907. [CrossRef]
Martinek, J. , Wendelin, T. , and Ma, Z. , 2018, “ Predictive Performance Modeling Framework for a Novel Enclosed Particle Receiver Configuration and Application for Thermochemical Energy Storage,” Sol. Energy, 166, pp. 409–421. [CrossRef]
Albrecht, K. J. , and Ho, C. K. , 2017, “ Heat Transfer Models of Moving Packed-Bed Particle-to-SCO2 Heat Exchangers,” ASME Paper No. ES2017-3377.
Flamant, G. , Gauthier, D. , Benoit, H. , Sans, J.-L. , Garcia, R. , Boissiere, B. , Ansart, R. , and Hemati, M. , 2013, “ Dense Suspension of Solid Particles as a New Heat Transfer Fluid for Concentrated Solar Thermal Plants: On-Sun Proof of Concept,” Chem. Eng. Sci., 102, pp. 567–576. [CrossRef]
Kuipers, J. A. M. , Prins, W. , and Van Swaaij, W. P. M. , 1992, “ Numerical Calculation of Wall-to-Bed Heat-Transfer Coefficients in Gas-Fluidized Beds,” AIChE J., 38(7), pp. 1079–1091. [CrossRef]
Lee, A. , and Miller, D. C. , 2013, “ A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber,” Ind. Eng. Chem. Res., 52(1), pp. 469–484. [CrossRef]
Trendewicz, A. , Braun, R. , Dutta, A. , and Ziegler, J. , 2014, “ One-Dimensional Steady-State Circulating Fluidized-Bed Reactor Model for Biomass Fast Pyrolysis,” Fuel, 133, pp. 253–262. [CrossRef]
Humbird, D. , Trendewicz, A. , Braun, R. , and Dutta, A. , 2017, “ One-Dimensional Biomass Fast Pyrolysis Model With Reaction Kinetics Integrated in an Aspen Plus Biorefinery Process Model,” ACS Sustainable Chem. Eng., 5(3), pp. 2463–2470. [CrossRef]
Molerus, O. , 1992, “ Heat Transfer in Gas Fluidized Beds—Part 2: Dependence of Heat Transfer on Gas Velocity,” Powder Technol., 70(1), pp. 15–20. [CrossRef]
Brendelberger, S. , von Storch, H. , Bulfin, B. , and Sattler, C. , 2017, “ Vacuum Pumping Options for Application in Solar Thermochemical Redox Cycles—Assessment of Mechanical-, Jet- and Thermochemical Pumping Systems,” Sol. Energy, 141, pp. 91–102. [CrossRef]
Zhang, H. , Benoit, H. , Gauthier, D. , Degreve, J. , Baeyens, J. , Lopez, I. P. , Hemati, M. , and Flamant, G. , 2016, “ Particle Circulation Loops in Solar Energy Capture and Storage: Gas-Solid Flow and Heat Transfer Considerations,” Appl. Energy, 161, pp. 206–224. [CrossRef]
Bellan, S. , Matsubara, K. , Cho, H. S. , Gokon, N. , and Kodama, T. , 2018, “ A CFD-DEM Study of Hydrodynamics With Heat Transfer in a Gas-Solid Fluidized Bed Reactor for Solar Thermal Applications,” Int. J. Heat Mass Transfer, 116, pp. 377–392. [CrossRef]
Repole, K. K. D. , and Jeter, S. M. , 2016, “ Design and Analysis of a High Temperature Particulate Hoist for Proposed Particle Heating Concentrator Solar Power System,” ASME Paper No. ES2016-59619.
Shirley, A. I. , and Lemcoff, N. O. , 1997, “ High-Purity Nitrogen by Pressure-Swing Adsorption,” AIChE J., 43(2), pp. 419–424. [CrossRef]
Krenzke, P. T. , and Davidson, J. H. , 2015, “ On the Efficiency of Solar H-2 and Co Production Via the Thermochemical Cerium Oxide Redox Cycle: The Option of Inert-Swept Reduction,” Energy Fuels, 29(2), pp. 1045–1054. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Contour plots of specific energy stored Δhtot based onequilibrium thermodynamics as a function of storage temperature TH and reduction O2 partial pressure PO2 for Ca0.9Sr0.1MnO3–δ with a nominal TCES cycle beginning at the reference state C of 500 °C in air. State H on the plot is at TH = 900 °C and PO2 = 10−4 bar.

Grahic Jump Location
Fig. 2

SEM micrographs with magnification of 100× (left) and 2000× (right) of porous Ca0.9Sr0.1MnO3–δ particles (mean dp − 320 μm) made by solid state reactive sintering (CoorsTek) an calcined at 1200 °C for 20 h. Micrographs reveal a porous structure with dominant grains and pores sizes on the order 1–5 μm in diameter. The porous particle structure was maintained after 1000 redox cycles between 500 °C in air and 900 °C in PO2 = 10−4 bar.

Grahic Jump Location
Fig. 3

Comparison of integrated reduction (left) and oxidation (right) rates of ≈1.0 g of porous Ca0.9Sr0.1MnO3–δ particles (mean dp − 320 μm) in a 2.0 cm long packed bed with 500  sccm of N2 with PO2 = 10−4 bar for reduction and 500  sccm of air with PO2 = 0.17 bar for re-oxidation. All reductions start at the thermodynamic equilibrium δ in air at the specified T which are δ = 0.0037, 0.031, 0.074, 0.117 for T =700, 800,900, and 1000 °C, respectively. The results show rapid re-oxidation rates limited by gas-phase O2 supply and slower reduction rates limited primarily by buildup of PO2 along the length of the bed.

Grahic Jump Location
Fig. 6

Results showing (a) particle and wall temperatures, as well as (b) Δhtot and PO2 as a function of receiver vertical position for inert CARBO Accucast ID50 (solid lines) and reactive Ca0.9Sr0.1MnO3–δ particles (dashed lines). Receiver operating conditions and mass flow rates are set to provide a Tp rise from 500 °C to 800 °C for a receiver solar aperture flux of 1500 suns with an external wall flux spreading αflux = 5.0. Other operating conditions are summarized in Table 3.

Grahic Jump Location
Fig. 7

Receiver model results for varying m˙p with inert CARBO Accucast ID50 (filled symbols) and reactive Ca0.9Sr0.1MnO3–δ particles (empty symbols) particles

Grahic Jump Location
Fig. 4

(a) Cross-sectional top view of a simple schematic of narrow-channel, particle-bed receiver arranged at angles for effective flux spreading to maintain average wall temperatures (Tw, avg) below material limits with efficient heat transfer through the opaque wall into the fluidized particles. (b) Predicted Tw,avg (solid curves) and ηsolar (dashed curves) for a range of wall-to-particle hT,w as a function of solar concentration for receiver configuration in part (a) with the following parameters Tp,avg = 700 °C, θ = 11.4 deg (αflux = 5), Tamb = 22 °C, εIR,w = 0.9, hT,ext = 10 W m−2 K−1.

Grahic Jump Location
Fig. 5

Schematics of particle and gas flow paths in narrow-channel counter-flow fluidized beds for (a) an indirect particle receiver with solar irradiated external walls angled to achieve flux spreading αflux, and (b) a particle-to-s-CO2 heat exchanger with heat recovery into the s-CO2 flowing through micro-channel flow paths. Schematics are shown with approximate temperature profiles expected for effective coupling of the CSP and TES subsystem to an advanced s-CO2 power block.

Grahic Jump Location
Fig. 8

Illustrative process flow diagram showing the components and flow paths in a TES subsystem based upon (a) CARBO Accucast ID50 alumina-silica particles and (b) Ca0.9Sr0.1MnO3–δ particles as the heat transfer and TES storage media. The flow and storage states are recorded in the tables for a TH = 750 °C and TC = 500 °C for a 10 MW plant to operate with 10 h of full capacity storage. Flow rates are based upon counterflow fluidized bed operation for the receiver and the primary heat exchanger as described in Sec. 4.2.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In