0
Research Papers

Moving Brick Receiver–Reactor: A Solar Thermochemical Reactor and Process Design With a Solid–Solid Heat Exchanger and On-Demand Production of Hydrogen and/or Carbon Monoxide

[+] Author and Article Information
Silvan Siegrist

Institute of Solar Research,
German Aerospace Center (DLR),
Professor-Rehm-Strasse 1,
Juelich 52428, Germany
e-mail: Silvan.Siegrist@dlr.de

Henrik von Storch

Institute of Solar Research,
German Aerospace Center (DLR),
Professor-Rehm-Strasse 1,
Juelich 52428, Germany
e-mail: henrikstorch@rocketmail.com

Martin Roeb

Institute of Solar Research,
German Aerospace Center (DLR),
Linder Hoehe,
Koeln 51147, Germany
e-mail: Martin.Roeb@dlr.de

Christian Sattler

Institute of Solar Research,
German Aerospace Center (DLR),
Linder Hoehe,
Koeln 51147, Germany
e-mail: Christian.Sattler@dlr.de

1Corresponding author.

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received September 7, 2018; final manuscript received November 18, 2018; published online January 8, 2019. Guest Editors: Tatsuya Kodama, Christian Sattler, Nathan Siegel, Ellen Stechel.

J. Sol. Energy Eng 141(2), 021009 (Jan 08, 2019) (9 pages) Paper No: SOL-18-1419; doi: 10.1115/1.4042069 History: Received September 07, 2018; Revised November 18, 2018

Three crucial aspects still to be overcome to achieve commercial competitiveness of the solar thermochemical production of hydrogen and carbon monoxide are recuperating the heat from the solid phase, achieving continuous or on-demand production beyond the hours of sunshine, and scaling to commercial plant sizes. To tackle all three aspects, we propose a moving brick receiver–reactor (MBR2) design with a solid–solid heat exchanger. The MBR2 consists of porous bricks that are reversibly mounted on a high temperature transport mechanism, a receiver–reactor where the bricks are reduced by passing through the concentrated solar radiation, a solid–solid heat exchanger under partial vacuum in which the reduced bricks transfer heat to the oxidized bricks, a first storage for the reduced bricks, an oxidation reactor, and a second storage for the oxidized bricks. The bricks may be made of any nonvolatile redox material suitable for a thermochemical two-step (TS) water splitting (WS) or carbon dioxide splitting (CDS) cycle. A first thermodynamic analysis shows that the MBR2 may be able to achieve solar-to-chemical conversion efficiencies of approximately 0.25. Additionally, we identify the desired operating conditions and show that the heat exchanger efficiency has to be higher than the fraction of recombination in order to increase the conversion efficiency.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Intergovernmental Panel on Climate Change, 2013, “ Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change—Summary for Policymakers,” Climate Change 2013—The Physical Science Basis, T. F. Stocker , D. Qin , G.-K. Plattner , M. Tignor , S. K. Allen , J. Boschung , A. Nauels , Y. Xia , V. Bex , and P. M. Midgley , eds., Cambridge University Press, Cambridge, UK.
Agrafiotis, C. , Roeb, M. , and Sattler, C. , 2015, “ A Review on Solar Thermal Syngas Production Via Redox Pair-Based Water/Carbon Dioxide Splitting Thermochemical Cycles,” Renewable Sustainable Energy Rev., 42, pp. 254–285. [CrossRef]
Muhich, C. L. , Ehrhart, B. D. , Al-Shankiti, I. , Ward, B. J. , Musgrave, C. B. , and Weimer, A. W. , 2016, “ A Review and Perspective of Efficient Hydrogen Generation Via Solar Thermal Water Splitting,” Wiley Interdiscip. Rev.: Energy Environ., 5(3), pp. 261–287. [CrossRef]
Yadav, D. , and Banerjee, R. , 2016, “ A Review of Solar Thermochemical Processes,” Renewable Sustainable Energy Rev., 54, pp. 497–532. [CrossRef]
Koepf, E. , Alxneit, I. , Wieckert, C. , and Meier, A. , 2017, “ A Review of High Temperature Solar Driven Reactor Technology: 25 Years of Experience in Research and Development at the Paul Scherrer Institute,” Appl. Energy, 188, pp. 620–651. [CrossRef]
Villafán-Vidales, H. , Arancibia-Bulnes, C. , Riveros-Rosas, D. , Romero-Paredes, H. , and Estrada, C. , 2017, “ An Overview of the Solar Thermochemical Processes for Hydrogen and Syngas Production: Reactors, and Facilities,” Renewable Sustainable Energy Rev., 75, pp. 894–908. [CrossRef]
Tamaura, Y. , Steinfeld, A. , Kuhn, P. , and Ehrensberger, K. , 1995, “ Production of Solar Hydrogen by a Novel, 2-Step, Water-Splitting Thermochemical Cycle,” Energy, 20(4), pp. 325–330. [CrossRef]
Haueter, P. , Moeller, S. , Palumbo, R. , and Steinfeld, A. , 1999, “ The Production of Zinc by Thermal Dissociation of Zinc Oxide-Solar Chemical Reactor Design,” Sol. Energy, 67(1–3), pp. 161–167. [CrossRef]
Agrafiotis, C. , Roeb, M. , Konstandopoulos, A. , Nalbandian, L. , Zaspalis, V. , Sattler, C. , Stobbe, P. , and Steele, A. , 2005, “ Solar Water Splitting for Hydrogen Production With Monolithic Reactors,” Sol. Energy, 79(4), pp. 409–421. [CrossRef]
Kaneko, H. , Miura, T. , Fuse, A. , Ishihara, H. , Taku, S. , Fukuzumi, H. , Naganuma, Y. , and Tamaura, Y. , 2007, “ Rotary-Type Solar Reactor for Solar Hydrogen Production With Two-Step Water Splitting Process,” Energy Fuels, 21(4), pp. 2287–2293. [CrossRef]
Diver, R. B. , Miller, J. E. , Allendorf, M. D. , Siegel, N. P. , and Hogan, R. E. , 2008, “ Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines,” ASME J. Sol. Energy Eng., 130(4), p. 041001. [CrossRef]
Gokon, N. , Takahashi, S. , Yamamoto, H. , and Kodama, T. , 2008, “ Thermochemical Two-Step Water-Splitting Reactor With Internally Circulating Fluidized Bed for Thermal Reduction of Ferrite Particles,” Int. J. Hydrogen Energy, 33(9), pp. 2189–2199. [CrossRef]
Chueh, W. C. , Falter, C. , Abbott, M. , Scipio, D. , Furler, P. , Haile, S. M. , and Steinfeld, A. , 2010, “ High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria,” Science, 330(6012), pp. 1797–1801. [CrossRef] [PubMed]
Koepf, E. , Advani, S. G. , Steinfeld, A. , and Prasad, A. K. , 2012, “ A Novel Beam-Down, Gravity-Fed, Solar Thermochemical Receiver/Reactor for Direct Solid Particle Decomposition: Design, Modeling, and Experimentation,” Int. J. Hydrogen Energy, 37(22), pp. 16871–16887. [CrossRef]
Lichty, P. , Liang, X. , Muhich, C. , Evanko, B. , Bingham, C. , and Weimer, A. W. , 2012, “ Atomic Layer Deposited Thin Film Metal Oxides for Fuel Production in a Solar Cavity Reactor,” Int. J. Hydrogen Energy, 37(22), pp. 16888–16894. [CrossRef]
Ermanoski, I. , Siegel, N. P. , and Stechel, E. B. , 2013, “ A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production,” ASME J. Sol. Energy Eng., 135(3), p. 031002. [CrossRef]
Thomey, D. , de Oliveira, L. , Säck, J.-P. , Roeb, M. , and Sattler, C. , 2012, “ Development and Test of a Solar Reactor for Decomposition of Sulphuric Acid in Thermochemical Hydrogen Production,” Int. J. Hydrogen Energy, 37(21), pp. 16615–16622. [CrossRef]
Lapp, J. , Davidson, J. H. , and Lipinski, W. , 2013, “ Heat Transfer Analysis of a Solid-Solid Heat Recuperation System for Solar-Driven Nonstoichiometric Redox Cycles,” ASME J. Sol. Energy Eng., 135(3), p. 031004. [CrossRef]
Bader, R. , Chandran, R. B. , Venstrom, L. J. , Sedler, S. J. , Krenzke, P. T. , De Smith, R. M. , Banerjee, A. , Chase, T. R. , Davidson, J. H. , and Lipiński, W. , 2015, “ Design of a Solar Reactor to Split CO2 Via Isothermal Redox Cycling of Ceria,” ASME J. Sol. Energy Eng., 137(3), p. 031007. [CrossRef]
Marxer, D. , Furler, P. , Takacs, M. , and Steinfeld, A. , 2017, “ Solar Thermochemical Splitting of CO2 Into Separate Streams of CO and O2 With High Selectivity, Stability, Conversion, and Efficiency,” Energy Environ. Sci., 10(5), pp. 1142–1149. [CrossRef]
Siegrist, S. , and von Storch, H. , 2018, “ Solarstrahlungsempfänger, Reaktorsystem mit einem Solarstrahlungsempfänger, Verfahren zum Erwärmen von Feststoffmedium mittels konzentrierter Solarstrahlung sowie Verfahren zum solaren Betrieb einer thermochemischen Reaktion,” Patent No. DE102018201319.5.
Siegrist, S. , von Storch, H. , Roeb, M. , and Sattler, C. , 2018, “ Moving Brick Receiver-Reactor (MBR2): A Solar Thermochemical Reactor and Process Design With a Solid-Solid Heat Exchanger and On-Demand Production of Hydrogen and/or Carbon Monoxide,” ASME Paper No. PowerEnergy2018-7665.
Richter, S. , and von Storch, H. , 2017, “ Solarstrahlungsempfänger, Industrieanlage mit einem Solarstrahlungsempfänger sowie Verfahren zum Solarbetrieb einer endothermen Reaktion,” Patent No. DE102017207170.
von Storch, H. , and Siegrist, S. , 2018, “ Wärmeübertrager,” Patent No. DE102018201317.9.
Bulfin, B. , Call, F. , Lange, M. , Lubben, O. , Sattler, C. , Pitz-Paal, R. , and Shvets, I. , 2015, “ Thermodynamics of CeO2 Thermochemical Fuel Production,” Energy Fuels, 29(2), pp. 1001–1009. [CrossRef]
Falter, C. P. , Sizmann, A. , and Pitz-Paal, R. , 2015, “ Modular Reactor Model for the Solar Thermochemical Production of Syngas Incorporating Counter-Flow Solid Heat Exchange,” Sol. Energy, 122, pp. 1296–1308. [CrossRef]
Falter, C. , 2017, “ Efficiency Potential of Solar Thermochemical Reactor Concepts With Ecological and Economic Performance Analysis of Solar Fuel Production,” Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany. https://elib.dlr.de/119009/
Touloukian, Y. S. , and Ho, C. Y. , 1970, “ Specific Heat—Nonmetallic Solids,” Thermophysical Properties of Matter—The TPRC Data Series, Y. S. Touloukian , ed., IFI/Plenum, New York.
Panlener, R. , Blumenthal, R. , and Garnier, J. , 1975, “ A Thermodynamic Study of Nonstoichiometric Cerium Dioxide,” J. Phys. Chem. Solids, 36(11), pp. 1213–1222. [CrossRef]
Engineering ToolBox, 2018, “ Engineering Toolbox,” Engineering ToolBox, accessed June 18, 2018, https://www.engineeringtoolbox.com
Falter, C. P. , and Pitz-Paal, R. , 2018, “ Modeling Counter-Flow Particle Heat Exchangers for Two-Step Solar Thermochemical Syngas Production,” Appl. Therm. Eng., 132, pp. 613–623. [CrossRef]
Brendelberger, S. , von Storch, H. , Bulfin, B. , and Sattler, C. , 2017, “ Vacuum Pumping Options for Application in Solar Thermochemical Redox Cycles—Assessment of Mechanical-, Jet- and Thermochemical Pumping Systems,” Sol. Energy, 141, pp. 91–102. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Typical distribution of heat losses (data from Ref. [20])

Grahic Jump Location
Fig. 2

The MBR2 reactor and process design with a solid–solid heat exchanger

Grahic Jump Location
Fig. 3

Schematic representation of relevant variables used in the thermodynamic analysis

Grahic Jump Location
Fig. 4

Reduction extent of ceria as a function of relative partial pressure of oxygen for different temperatures

Grahic Jump Location
Fig. 5

Schematic drawing of the receiver–reactor and heat exchanger subsystems

Grahic Jump Location
Fig. 6

Solar-to-chemical conversion efficiency ηstc for three levels of the fraction of recombination frecomb. In each subfigure, five levels of the heat exchanger efficiency ηHX = [0, 0.2, 0.4, 0.6, 0.8] are assumed. For all subfigures, the following parameters are kept constant: pred = 100 Pa, Tox = 1000 K, T0 = 300 K, ηpump = 0.14, ηel = 0.4, and ηrec = 0.9: (a) frecomb = 0, (b) frecomb = 0.4, and (c) frecomb = 0.8.

Grahic Jump Location
Fig. 7

Solar-to-chemical conversion efficiency ηstc for three levels of the heat exchanger efficiency ηHX. In each subfigure, five levels of the fraction of recombination frecomb = [0, 0.2, 0.4, 0.6, 0.8] are assumed. For all subfigures, the following parameters are kept constant: pred = 100 Pa, Tox = 1000 K, T0 = 300 K, ηpump = 0.14, ηel = 0.4, and ηrec = 0.9: (a) ηHX = 0, (b) ηHX = 0.4, and (c) ηHX = 0.8.

Grahic Jump Location
Fig. 8

Isocontour lines of the solar-to-chemical conversion efficiency ηstc as a function of ηHX and frecomb for three different combinations of Tred and pred. The gray dashed line marks the operating points where ηHX = frecomb holds: (a) pred = 100 Pa, Tred = 1800 K, (b) pred = 100 Pa, Tred = 1600 K, and (c) pred = 10 Pa, Tred = 1800 K.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In