Review Article

Review of Solar Cooling Technologies in the MENA Region

[+] Author and Article Information
Abdul Ahad Iqbal

Mechanical Engineering Department,
Khalifa University,
P.O. Box: 2533, Sas Al Nakhl Campus,
Abu Dhabi, United Arab Emirates
e-mail: abahad@pi.ac.ae

Ali Al-Alili

Mechanical Engineering Department,
Khalifa University,
P.O. Box: 2533, Sas Al Nakhl Campus,
Abu Dhabi, United Arab Emirates
e-mail: ali.alalili@ku.ac.ae

1Corresponding author.

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received April 5, 2018; final manuscript received July 15, 2018; published online November 14, 2018. Assoc. Editor: Jorge Gonzalez.

J. Sol. Energy Eng 141(1), 010801 (Nov 14, 2018) (25 pages) Paper No: SOL-18-1160; doi: 10.1115/1.4041159 History: Received April 05, 2018; Revised July 15, 2018

The demand for air conditioning and refrigeration has been increasing due to a rise in the global temperature and the burgeoning world population. Conventional electricity-driven vapor compression cycles (VCCs) use refrigerants, which are harmful to the environment, and are responsible for the consumption of huge amounts of electricity leading to high CO2 emissions. Therefore, solar-driven cooling cycles have great potential to address these issues, and the Middle East and North Africa (MENA) region has an abundant supply of solar radiation. In this study, the research carried out within the MENA region on solar cooling technologies is presented. The solar cooling cycles reviewed are the adsorption, absorption, solid desiccant, liquid desiccant, ejector, and solar electric-driven cycles. The interest over time and across countries in each of these cycles is also discussed. This review shows that interest in solar cooling technologies has increased sharply in the MENA region since late 2000s, and there are several issues like subsidized electricity prices hindering their adoption. In addition, this work shows researches where more investigations are needed.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


IEA, 2015, “ World Energy Outlook 2015 Factsheet,” International Energy Agency, Paris, France, pp. 1–3.
Middle East Solar Industry Association, 2015, “ MENA Solar Outlook 2015,” Middle East Solar Industry Association, Dubai, United Arab Emirates.
Al-Alili, A. , Hwang, Y. , and Radermacher, R. , 2014, “ Review of Solar Thermal Air Conditioning Technologies,” Int. J. Refrig., 39, pp. 4–22. [CrossRef]
Balaras, C. A. , Grossman, G. , Henning, H. M. , Carlos, A., Ferreira, I. , Podesser, E. , Wang, L. , and Wiemken, E. , 2007, “ Solar Air Conditioning in Europe—An Overview,” Renewable Sustainable Energy Rev., 11(2), pp. 299–314. [CrossRef]
Mokri, A. , Aal Ali, M. , and Emziane, M. , 2013, “ Solar Energy in the United Arab Emirates: A Review,” Renewable Sustainable Energy Rev., 28, pp. 340–375. [CrossRef]
Mugnier, D. , Jakob, U. , and Kohlenbach, P. , 2016, “ Assessment on the Commercial Viability of Solar Cooling Technologies and Applications in the Arab Region,” United Nations Environment Programme, Nairobi, Kenya, p. 79.
ASHRAE, 2013, “ Climatic Data for Building Design Standards (ANSI Approved),” ASHRAE, Atlanta, GA, Standard No. 169-2013, p. 100.
Boubakri, A. , Arsalane, M. , Yous, B. , and Pons, M. , 1992, “ Experimental Study of Adsorptive Solar-Powered Ice Makers in Agadir (Morocco)—1: Performance in Actual Site,” Renewable Energy, 2(1), pp. 7–13. [CrossRef]
Al Mers, A. , Azzabakh, A. , Mimet, A. , and El Kalkha, H. , 2006, “ Optimal Design Study of Cylindrical Finned Reactor for Solar Adsorption Cooling Machine Working With Activated Carbon-Ammonia Pair,” Appl. Therm. Eng., 26(16), pp. 1866–1875. [CrossRef]
Louajari, M. , Mimet, A. , and Ouammi, A. , 2011, “ Study of the Effect of Finned Tube Adsorber on the Performance of Solar Driven Adsorption Cooling Machine Using Activated Carbon-Ammonia Pair,” Appl. Energy, 88(3), pp. 690–698. [CrossRef]
Allouhi, A. , Kousksou, T. , Jamil, A. , and Zeraouli, Y. , 2014, “ Modeling of a Thermal Adsorber Powered by Solar Energy for Refrigeration Applications,” Energy, 75, pp. 589–596. [CrossRef]
El Fadar, A. , 2015, “ Thermal Behavior and Performance Assessment of a Solar Adsorption Cooling System With Finned Adsorber,” Energy, 83, pp. 674–684. [CrossRef]
Hadj Ammar, M. A. , Benhaoua, B. , and Balghouthi, M. , 2015, “ Simulation of Tubular Adsorber for Adsorption Refrigeration System Powered by Solar Energy in Sub-Sahara Region of Algeria,” Energy Convers. Manage., 106, pp. 31–40. [CrossRef]
Lemmini, F. , and Errougani, A. , 2007, “ Experimentation of a Solar Adsorption Refrigerator in Morocco,” Renewable Energy, 32(15), pp. 2629–2641. [CrossRef]
Fadar, A. E. , Mimet, A. , and Pérez-García, M. , 2009, “ Modelling and Performance Study of a Continuous Adsorption Refrigeration System Driven by Parabolic Trough Solar Collector,” Sol. Energy, 83(6), pp. 850–861. [CrossRef]
EL-sharkawy, I. I. , Abdelmaguid, H. , Saha, B. B. , Koyama, S. , and Miyazaki, T. , 2013, “ Performance Investigation of a Solar-Powered Adsorption Cooling System: A Case Study for Egypt,” International Symposium on Innovative Materials for Processes in Energy Systems (IMPRES), Fukuoka, Japan, Sept. 4–6, 2013, Paper No. IMPRES2013-111.
El-Sharkawy, I. I. , AbdelMeguid, H. , and Saha, B. B. , 2014, “ Potential Application of Solar Powered Adsorption Cooling Systems in the Middle East,” Appl. Energy, 126, pp. 235–245. [CrossRef]
Hassan, H. Z. , 2014, “ Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair,” Energies, 7(10), pp. 6382–6400. [CrossRef]
Sim, L. F. , 2014, “ Numerical Modelling of a Solar Thermal Cooling System Under Arid Weather Conditions,” Renewable Energy, 67, pp. 186–191. [CrossRef]
Sahmarani, K. J. , Obied, F. K. , and El-Samni, O. A. , 2010, “ Proposal for an Adsorption Solar-Driven Air-Conditioning Unit for Public Offices,” Tenth International Conference Enhanced Building Operations, Shuwaikh, Kuwait, Oct. 26–28, Paper No. ESL-IC-10-10-79.
Schwerdt, P. , and Ali, A. H. H. , 2014, “ German/Egyptian Demonstration Project on Solar Cooling in a Hot Arid Climate,” Energy Procedia, 48, pp. 991–996. [CrossRef]
Reda, A. M. , Ali, A. H. H. , Taha, I. S. , and Morsy, M. G. , 2017, “ Performance of a Small-Scale Solar-Powered Adsorption Cooling System Performance of a Small-Scale Solar-Powered Adsorption Cooling System,” Int. J. Green Energy, 14(1), pp. 75–85. [CrossRef]
Al Turk, Y. , and Ayadi, O. , 2015, “ Optimize and Validate the Performance of a Solar Air Conditioning System Under Jordanian Climate,” Fifth Jordanian IIR International Conference on Refrigeration and Air Conditioning (JIIRCRAC), Aqaba, Jordan, Mar. 8–10, pp. 1–9.
Khattab, N. M. , 2004, “ A Novel Solar-Powered Adsorption Refrigeration Module,” Appl. Therm. Eng., 24(17–18), pp. 2747–2760. [CrossRef]
Khattab, N. M. , 2006, “ Simulation and Optimization of a Novel Solar-Powered Adsorption Refrigeration Module,” Sol. Energy, 80(7), pp. 823–833. [CrossRef]
Abu Hamdeh, N. H. , and Al-Muhtaseb, M. A. , 2010, “ Optimization of Solar Adsorption Refrigeration System Using Experimental and Statistical Techniques,” Energy Convers. Manage., 51(8), pp. 1610–1615. [CrossRef]
Allouhi, A. , Kousksou, T. , Jamil, A. , El Rhafiki, T. , Mourad, Y. , and Zeraouli, Y. , 2015, “ Optimal Working Pairs for Solar Adsorption Cooling Applications,” Energy, 79(C), pp. 235–247. [CrossRef]
Laidi, M. , and Hanini, S. , 2013, “ Optimal Solar COP Prediction of a Solar-Assisted Adsorption Refrigeration System Working With Activated Carbon/Methanol as Working Pairs Using Direct and Inverse Artificial Neural Network,” Int. J. Refrig., 36(1), pp. 247–257. [CrossRef]
Fasfous, A. , Asfar, J. , Al-Salaymeh, A. , Sakhrieh, A. , Al-hamamre, Z. , Al-awwab, A. , and Hamdan, M. , 2013, “ Potential of Utilizing Solar Cooling in the University of Jordan,” Energy Convers. Manage., 65, pp. 729–735. [CrossRef]
Al-mogbel, A. , Ruch, P. , Al-rihaili, A. , Al-ajlan, S. , Witzig, A. , and Michel, B. , 2013, “ The Potential of Solar Adsorption Air-Conditioning in Saudi Arabia: A Simulation Study,” Fifth International Conference Solar Air-Conditioning, Bad Krozingen, Germany Sept. 25–27, pp. 256–261.
Ali, C. , Rabhi, K. , Ncir, R. , Nasri, F. , and Bacha, B. H. , 2013, “ New Adsorption Air Conditioning System Powered by Solar Energy; Operation Principles and Winter Mode Modelling and Simulation,” Int. Rev. Mech. Eng., 7(1), pp. 96–104. https://www.praiseworthyprize.org/jsm/index.php?journal=ireme&page=article&op=view&path[]=11236
Rabhi, K. , Ali, C. , Nciri, R. , and Ben Bacha, H. , 2015, “ Novel Design and Simulation of a Solar Air-Conditioning System With Desiccant Dehumidification and Adsorption Refrigeration,” Arab. J. Sci. Eng., 40(12), pp. 3379–3391. [CrossRef]
Haghighi, A. P. , Pakdel, S. H. , and Jafari, A. , 2016, “ A Study of a Wind Catcher Assisted Adsorption Cooling Channel for Natural Cooling of a 2-Storey Building,” Energy, 102, pp. 118–138. [CrossRef]
Allouhi, A. , Kousksou, T. , Jamil, A. , El Rhafiki, T. , Mourad, Y. , and Zeraouli, Y. , 2015, “ Economic and Environmental Assessment of Solar Air-Conditioning Systems in Morocco,” Renewable Sustainable Energy Rev., 50, pp. 770–781. [CrossRef]
Allouhi, A. , Kousksou, T. , Jamil, A. , Agrouaz, Y. , Bouhal, T. , Saidur, R. , and Benbassou, A. , 2016, “ Performance Evaluation of Solar Adsorption Cooling Systems for Vaccine Preservation in Sub-Saharan Africa,” Appl. Energy, 170, pp. 232–241. [CrossRef]
Mazloumi, M. , Naghashzadegan, M. , and Javaherdeh, K. , 2008, “ Simulation of Solar Lithium Bromide-Water Absorption Cooling System With Parabolic Trough Collector,” Energy Convers. Manage., 49(10), pp. 2820–2832. [CrossRef]
Ghaddar, N. K. , Shihab, M. , and Bdeir, F. , 1997, “ Modeling and Simulation of Solar Absorption System Performance in Beirut,” Renewable Energy, 10(4), pp. 539–558. [CrossRef]
Al-Alili, A. , Hwang, Y. , Radermacher, R. , and Kubo, I. , 2010, “ Optimization of a Solar Powered Absorption Cycle Under Abu Dhabi's Weather Conditions,” Sol. Energy, 84(12), pp. 2034–2040. [CrossRef]
Fayad, S. , Younes, R. , and Abboudi, S. , 2011, “ Numerical Simulation of Solar Absorption Machine,” Energy Procedia, 6, pp. 130–135. [CrossRef]
Calise, F. , 2012, “ High Temperature Solar Heating and Cooling Systems for Different Mediterranean Climates: Dynamic Simulation and Economic Assessment,” Appl. Therm. Eng., 32(1), pp. 108–124. [CrossRef]
Al-Alili, A. , Islam, M. D. , Kubo, I. , Hwang, Y. , and Radermacher, R. , 2012, “ Modeling of a Solar Powered Absorption Cycle for Abu Dhabi,” Appl. Energy, 93, pp. 160–167. [CrossRef]
Shekarchian, M. , Moghavvemi, M. , Motasemi, F. , and Mahlia, T. M. I. , 2011, “ Energy Savings and Cost-Benefit Analysis of Using Compression and Absorption Chillers for Air Conditioners in Iran,” Renewable Sustainable Energy Rev., 15(4), pp. 1950–1960. [CrossRef]
Balghouthi, M. , Chahbani, M. H. , and Guizani, A. , 2005, “ Solar Powered Air Conditioning as a Solution to Reduce Environmental Pollution in Tunisia,” Desalination, 185(1–3), pp. 105–110. [CrossRef]
Balghouthi, M. , Chahbani, M. H. , and Guizani, A. , 2008, “ Feasibility of Solar Absorption Air Conditioning in Tunisia,” Build. Environ., 43(9), pp. 1459–1470. [CrossRef]
Balghouthi, M. , Chahbani, M. H. , and Guizani, A. , 2012, “ Investigation of a Solar Cooling Installation in Tunisia,” Appl. Energy, 98, pp. 138–148. [CrossRef]
Boukhris, Y. , and Allani, Y. , 2015, “ Solar Power Generation and Solar Cooling Trigeneration: A New Approach of Conceptual Design for Countries of Mena Region,” CISBAT 2015, pp. 627–632.
Mohan, G. , Kumar, U. , Pokhrel, M. K. , and Martin, A. , 2016, “ A Novel Solar Thermal Polygeneration System for Sustainable Production of Cooling, Clean Water and Domestic Hot Water in United Arab Emirates: Dynamic Simulation and Economic Evaluation,” Appl. Energy, 167, pp. 173–188. [CrossRef]
Mohan, G. , Uday Kumar, N. T. , Pokhrel, M. K. , and Martin, A. , 2016, “ Experimental Investigation of a Novel Solar Thermal Polygeneration Plant in United Arab Emirates,” Renew. Energy, 91, pp. 361–373. [CrossRef]
Mathkor, R. Z. , Agnew, B. , Al-Weshahi, M. A. , and Latrsh, F. , 2015, “ Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle,” Energies, 8(8), pp. 8835–8856. [CrossRef]
Perdichizzi, A. , Barigozzi, G. , Franchini, G. , and Ravelli, S. , 2015, “ Peak Shaving Strategy Through a Solar Combined Cooling and Power System in Remote Hot Climate Areas,” Appl. Energy, 143, pp. 154–163. [CrossRef]
Said, S. A. M. , El-Shaarawi, M. A. I. , and Siddiqui, M. U. , 2012, “ Alternative Designs for a 24-h Operating Solar-Powered Absorption Refrigeration Technology,” Int. J. Refrig., 35(7), pp. 1967–1977. [CrossRef]
Hammoudeh, S. , Ayyash, S. , and Suri, R. K. , 1984, “ Conventional and Solar Cooling Systems for Kuwait,” Energy Econ., 6(4), pp. 259–266. [CrossRef]
Al-Ugla, A. A. , El-Shaarawi, M. A. I. , Said, S. A. M. , and Al-Qutub, A. M. , 2016, “ Techno-Economic Analysis of Solar-Assisted Air-Conditioning Systems for Commercial Buildings in Saudi Arabia,” Renewable Sustainable Energy Rev., 54, pp. 1301–1310. [CrossRef]
Godarzi, A. A. , Jalilian, M. , Samimi, J. , Jokar, A. , and Vesaghi, M. A. , 2013, “ Design of a PCM Storage System for a Solar Absorption Chiller Based on Exergoeconomic Analysis and Genetic Algorithm,” Int. J. Refrig., 36(1), pp. 88–101. [CrossRef]
Salata, F. , Tarsitano, A. , Golasi, I. , de Lieto Vollaro, E. , Coppi, M. , and de Lieto Vollaro, A. , 2016, “ Application of Absorption Systems Powered by Solar Ponds in Warm Climates for the Air Conditioning in Residential Buildings,” Energies, 9(10), p. 821. [CrossRef]
Joudi, K. A. , and Abdul-ghafour, Q. J. , 2003, “ Development of Design Charts for Solar Cooling Systems—Part I: Computer Simulation for a Solar Cooling System and Development of Solar Cooling Design Charts,” Energy Convers. Manage., 44(2), pp. 313–339. [CrossRef]
Ardehali, M. M. , Shahrestani, M. , and Adams, C. C. , 2007, “ Energy Simulation of Solar Assisted Absorption System and Examination of Clearness Index Effects on Auxiliary Heating,” Energy,” Convers. Manage., 48(3), pp. 864–870. [CrossRef]
Al-Homoud, A. A. , Suri, R. K. , Al-Roumi, R. , and Maheshwari, G. P. , 1996, “ Experiences With Solar Cooling Systems in Kuwait,” Renewable Energy, 9(1–4), pp. 664–669. [CrossRef]
Osman, M. G. , 1985, “ Performance Analysis of a Solar Air-Conditioned Villa in the Arabian Gulf,” Energy Convers. Manage., 25(3), pp. 283–293. [CrossRef]
Hammad, M. , and Zurigat, Y. , 1998, “ Performance of a Second Generation Solar Cooling Unit,” Sol. Energy, 62(2), pp. 79–84. [CrossRef]
Ssembatya, M. , 2013, “ Performance Evaluation of a Solar Cooling System in UAE – Ras Al Khaimah by Both Experiment and Simulation,” Master's thesis, University in Gävle, Gävle, Sweden. http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A623975&dswid=1329
Agrouaz, Y. , Bouhal, T. , Allouhi, A. , Kousksou, T. , Jamil, A. , and Zeraouli, Y. , 2017, “ Energy and Parametric Analysis of Solar Absorption Cooling Systems in Various Moroccan Climates,” Case Stud. Therm. Eng., 9, pp. 28–39. [CrossRef]
Mokhtar, M. , Ali, M. T. , Bräuniger, S. , Afshari, A. , Sgouridis, S. , Armstrong, P. , and Chiesa, M. , 2010, “ Systematic Comprehensive Techno-Economic Assessment of Solar Cooling Technologies Using Location-Specific Climate Data,” Appl. Energy, 87(12), pp. 3766–3778. [CrossRef]
Fathalah, K. , and Aly, S. E. , 1991, “ Theoretical Study of a Solar Powered Absorption/MED Combined System,” Energy Convers. Manage., 31(6), pp. 529–544. [CrossRef]
Boyaghchi, F. A. , and Taheri, R. , 2014, “ Hourly Performance Prediction of Solar Ejector-Absorption Refrigeration Based on Exergy and Exergoeconomic Concept,” Int. J. Renewable Energy Res., 4(4), pp. 901–910.
Ghaith, F. A. , and Abusitta, R. , 2014, “ Energy Analyses of an Integrated Solar Powered Heating and Cooling Systems in UAE,” Energy Build., 70, pp. 117–126. [CrossRef]
Ratlamwala, T. A. H. , Gadalla, M. A. , and Dincer, I. , 2011, “ Performance Assessment of an Integrated PV/T and Triple Effect Cooling System for Hydrogen and Cooling Production,” Int. J. Hydrogen Energy, 36(17), pp. 11282–11291. [CrossRef]
Almshkawi, M. J. , 2011, “ Modelling and Assessing an Efficient Building With Absorption Chillier for Two Different Climates in MENA Region,” Master's thesis, Kassel University, Kassel, Germany. https://www.uni-kassel.de/eecs/fileadmin/groups/w_460600/thesis/batch1/Master_Thesis_-_Jihad_Mishkawi.pdf
Ssembatya, M. , Pokhrel, M. K. , and Reddy, R. , 2014, “ Simulation Studies on Performance of Solar Cooling System in UAE Conditions,” Energy Procedia, 48, pp. 1007–1016. [CrossRef]
Al-Alili, A. , Hwang, Y. , and Radermacher, R. , 2014, “ A Hybrid Solar Air Conditioner: Experimental Investigation,” Int. J. Refrig., 39(2), pp. 117–124. [CrossRef]
Joudi, K. A. , and Dhaidan, N. S. , 2001, “ Application of Solar Assisted Heating and Desiccant Cooling Systems for a Domestic Building,” Energy Convers. Manage., 42(8), pp. 995–1022. [CrossRef]
Hatami, Z. , Saidi, M. H. , Mohammadian, M. , and Aghanajafi, C. , 2012, “ Optimization of Solar Collector Surface in Solar Desiccant Wheel Cycle,” Energy Build., 45, pp. 197–201. [CrossRef]
Ahmed, M. H. , Kattab, N. M. , and Fouad, M. , 2005, “ Evaluation and Optimization of Solar Desiccant Wheel Performance,” Renewable Energy, 30(3), pp. 305–325. [CrossRef]
Joudi, K. A. , and Madhi, S. M. , 1987, “ An Experimental Investigation Into a Solar Assisted Desiccant-Evaporative Air-Conditioning System,” Sol. Energy, 39(2), pp. 97–107. [CrossRef]
Labed, A. , Rouag, A. , Benchabane, A. , Moummi, N. , and Zerouali, M. , 2015, “ Applicability of Solar Desiccant Cooling Systems in Algerian Sahara: Experimental Investigation of Flat Plate Collectors,” J. Appl. Eng. Sci. Technol., 1(2), pp. 61–69. https://www.asjp.cerist.dz/en/article/4493
Guidara, Z. , Elleuch, M. , and Ben Bacha, H. , 2013, “ New Solid Desiccant Solar Air Conditioning Unit in Tunisia: Design and Simulation Study,” Appl. Therm. Eng., 58(1–2), pp. 656–663. [CrossRef]
Al-Alili, A. , Hwang, Y. , Radermacher, R. , and Kubo, I. , 2012, “ A High Efficiency Solar Air Conditioner Using Concentrating Photovoltaic/Thermal Collectors,” Appl. Energy, 93, pp. 138–147. [CrossRef]
Al-Alili, A. , Hwang, Y. , and Radermacher, R. , 2015, “ Performance of a Desiccant Wheel Cycle Utilizing New Zeolite Material: Experimental Investigation,” Energy, 81, pp. 137–145. [CrossRef]
Gadalla, M. , and Saghafifar, M. , 2016, “ Performance Assessment and Transient Optimization of Air Precooling in Multi-Stage Solid Desiccant Air Conditioning Systems,” Energy Convers. Manage., 119, pp. 187–202. [CrossRef]
Saghafifar, M. , and Gadalla, M. , 2016, “ Performance Assessment of Integrated PV/T and Solid Desiccant Air-Conditioning Systems for Cooling Buildings Using Maisotsenko Cooling Cycle,” Sol. Energy, 127, pp. 79–95. [CrossRef]
Elzahzby, A. M. , Kabeel, A. E. , Bassuoni, M. M. , and Abdelgaied, M. , 2014, “ A Mathematical Model for Predicting the Performance of the Solar Energy Assisted Hybrid Air Conditioning System, With One-Rotor Six-Stage Rotary Desiccant Cooling System,” Energy Convers. Manage., 77, pp. 129–142. [CrossRef]
Davies, P. A. , 2005, “ A Solar Cooling System for Greenhouse Food Production in Hot Climates,” Sol. Energy, 79(6), pp. 661–668. [CrossRef]
Elhelw, M. , 2016, “ Performance Evaluation for Solar Liquid Desiccant Air Dehumidification System,” Alexandria Eng. J., 55(2), pp. 933–940. [CrossRef]
Elsarrag, E. , and Abdalla, K. , 2009, “ Effectiveness and Performance of a Counterflow Liquid Desiccant Regeneration Tower in a Hot-Humid Climate,” ASHRAE Trans., 115(Part 1), pp. 389–398. https://www.techstreet.com/ashrae/standards/ch-09-041-effectiveness-and-performance-of-a-counterflow-liquid-desiccant-regeneration-tower-in-a-hot-humid-climate?gateway_code=ashrae&product_id=1713409#full
Khalid Ahmed, C. S. , Gandhidasan, P. , and Al-Farayedhi, A. A. , 1997, “ Simulation of a Hybrid Liquid Desiccant Based Air-Conditioning System,” Appl. Therm. Eng., 17(2), pp. 125–134. [CrossRef]
Radhwan, A. M. , ElSayed, M. M. , and Gari, H. N. , 1999, “ Mathematical Modeling of Solar Operated Liquid Desiccant, Evaporative Air Conditioning System,” JKAU Eng. Sci, 11(1), pp. 119–141. [CrossRef]
Khalil, A. , 2012, “ An Experimental Study on Multi-Purpose Desiccant Integrated Vapor-Compression Air-Conditioning System,” Int. J. Energy Res., 36(4), pp. 535–544. [CrossRef]
Audah, N. , Ghaddar, N. , and Ghali, K. , 2011, “ Optimized Solar-Powered Liquid Desiccant System to Supply Building Fresh Water and Cooling Needs,” Appl. Energy, 88(11), pp. 3726–3736. [CrossRef]
Lychnos, G. , and Davies, P. A. , 2012, “ Modelling and Experimental Verification of a Solar-Powered Liquid Desiccant Cooling System for Greenhouse Food Production in Hot Climates,” Energy, 40(1), pp. 116–130. [CrossRef]
Davies, P. A. , and Knowles, P. R. , 2006, “ Seawater Bitterns as a Source of Liquid Desiccant for Use in Solar-Cooled Greenhouses,” Desalination, 196(1–3), pp. 266–279. [CrossRef]
Lychnos, G. , Fletcher, J. P. , and Davies, P. A. , 2010, “ Properties of Seawater Bitterns With Regard to Liquid-Desiccant Cooling,” Desalination, 250(1), pp. 172–178. [CrossRef]
Alizadeh, S. , and Haghgou, H. R. , 2011, “ Performance Prediction and Experimental Analysis of a Solar Liquid Desiccant Air Conditioner,” World Renewable Energy Congress, Sweden, pp. 3953–3960.
Shaery, M. , and Al-Zubaidy, S. , 2013, “ Solar Desiccant Air Conditioning System and Its Performance in the Middle - East,” SB13 Dubai: National Conference on Advancing the Green Agenda—Technology, Practices and Policies, Dubai, United Arab Emirates, Dec. 8–10, P. 6.
Al-Khalidy, N. , 1998, “ An Experimental Study of an Ejector Cycle Refrigeration Machine Operating on R113,” Int. J. Refrig., 21(8), pp. 617–625. [CrossRef]
Nehdi, L. K. E. , and Elakhdar, M. , 2008, “ A Solar Ejector Air-Conditioning System Using Environment-Friendly Working Fluids,” Int. J. Energy Res., 32(13), pp. 1194–1201. [CrossRef]
Diaconu, B. M. , Varga, S. , and Oliveira, A. C. , 2011, “ Numerical Simulation of a Solar-Assisted Ejector Air Conditioning System With Cold Storage,” Energy, 36(2), pp. 1280–1291. [CrossRef]
Diaconu, B. M. , 2012, “ Energy Analysis of a Solar-Assisted Ejector Cycle Air Conditioning System With Low Temperature Thermal Energy Storage,” Renewable Energy, 37(1), pp. 266–276. [CrossRef]
Allouche, Y. , Bouden, C. , and Riffat, S. B. , 2012, “ A Solar-Driven Ejector Refrigeration System for Mediterranean Climate: Experience Improvement and New Results Performed,” Energy Procedia, 18, pp. 1115–1124. [CrossRef]
Zhang, W. , Ma, X. , Omer, S. A. , and Riffat, S. B. , 2012, “ Optimum Selection of Solar Collectors for a Solar-Driven Ejector Air Conditioning System by Experimental and Simulation Study,” Energy Convers. Manage., 63, pp. 106–111. [CrossRef]
Tashtoush, B. , Alshare, A. , and Al-Rifai, S. , 2015, “ Hourly Dynamic Simulation of Solar Ejector Cooling System Using TRNSYS for Jordanian Climate,” Energy Convers. Manage., 100, pp. 288–299. [CrossRef]
Tsikalakis, A. , Tomtsi, T. , Hatziargyriou, N. D. , Poullikkas, A. , Malamatenios, Ch. , Giakoumelos, E. , Jaouad, O. C. , Chenak, A. , Fayek, A. , Matar, T. , and Yasin, A. , 2011, “ Review of Best Practices of Solar Electricity Resources Applications in Selected Middle East and North Africa (MENA) ++Countries,” Renewable Sustainable Energy Rev., 15(6), pp. 2838–2849. [CrossRef]
Abderrezek, M. , and Fathi, M. , 2017, “ Experimental Study of the Dust Effect on Photovoltaic Panels' Energy Yield,” Sol. Energy, 142, pp. 308–320. [CrossRef]
Hadjipanayi, M. , Koumparou, I. , Philippou, N. V. , Paraskeva, N. , Phinikarides, A. , Makrides, G. , Efthymiou, V. , and Georghiou, G. E. , 2016, “ Prospects of Photovoltaics in Southern European, Mediterranean and Middle East Regions,” Renewable Energy, 92, pp. 58–74. [CrossRef]
Mayer, J. , Najdawi, C. , Ben Hmid, A. , and Grundner, C. , 2014, “ Enabling PV in the MENA Region—The Emerging PV Market in Tunisia,” Deutsche Gesellschaft für, Internationale Zusammenarbeit (GIZ) GmbH, Eschborn, Germany, accessed Jan. 1, 2017, https://www.solarwirtschaft.de/fileadmin/media/pdf/Studie_BSW_Tunisia_en_web.pdf
IRENA, 2016, “ Renewable Energy in the Arab Region. Overview of Developments,” International Renewable Energy Agency, Abu Dhabi, United Arab Emirates, accessed Jul. 20, 2017, http://www.irena.org/DocumentDownloads/Publications/IRENA_Arab_Region_Overview_2016.pdf
Otanicar, T. , Taylor, R. A. , and Phelan, P. E. , 2012, “ Prospects for Solar Cooling—An Economic and Environmental Assessment,” Sol. Energy, 86(5), pp. 1287–1299. [CrossRef]
Abu-Zour, A. M. , and Riffat, S. B. , 2007, “ Solar-Driven Air-Conditioning and Cycles: A Review,” J. Eng. Res., 4(1), pp. 48–63. [CrossRef]
Mugnier, D. , Fedrizzi, R. , Thygesen, R. , and Selke, T. , 2015, “ New Generation Solar Cooling and Heating Systems With IEA SHC Task 53: Overview and First Results,” Energy Procedia, 70, pp. 470–473. [CrossRef]
Cottrell, W. , 2015, “ How Much Should You Pay for Your Solar PV System?,” Brighton Energy Cooperative, Brighton, UK, accessed Jan. 1, 2017, http://www.brightonenergy.org.uk/2015/01/cost-solar-system/
Jubran, B. A. , Al-Hinai, H. A. , Zurigat, Y. H. , and Al-Salti, S. , 2003, “ Feasibility of Using Various Photovoltaic Systems for Window-Type Air-Conditioning Units Under Hot-Arid Climates,” Renewable Energy, 28(10), pp. 1545–1553. [CrossRef]
Laidi, M. , Hanini, S. , Abbad, B. , Bedja, M. , Ouali, M. , Ferhat, Y. , and Guers, S. , 2012, “ The Study and Performance of a Modified ENIEM Conventional Refrigerator to Serve as a Photovoltaic Powered One Under Algerian Climate Conditions,” J. Renewable Sustainable Energy, 4(5), pp. 0–18. [CrossRef]
Khattab, N. M. , and El Shenawy, E. T. , 2006, “ Optimal Operation of Thermoelectric Cooler Driven by Solar Thermoelectric Generator,” Energy Convers. Manage., 47(4), pp. 407–426. [CrossRef]
Esfahani, J. A. , Rahbar, N. , and Lavvaf, M. , 2011, “ Utilization of Thermoelectric Cooling in a Portable Active Solar Still—An Experimental Study on Winter Days,” Desalination, 269(1–3), pp. 198–205. [CrossRef]
Abdul-Wahab, S. A. , Elkamel, A. , Al-Damkhi, A. M. , Al-Habsi, I. A. , Al-Rubai'ey', H. S. , Al-Battashi, A. K. , Al-Tamimi, A. R. , Al-Mamari, K. H. , and Chutani, M. U. , 2009, “ Design and Experimental Investigation of Portable Solar Thermoelectric Refrigerator,” Renewable Energy, 34(1), pp. 30–34. [CrossRef]
Abdul-Wahab, S. A. , Elkamel, A. , Al-Damkhi, A. M. , Al-Habsi, I. A. , Al-Rubai'ey', H. S. , Al-Battashi, A. K. , Al-Tamimi, A. R. , Al-Mamari, K. H. , and Chutani, M. U. , 2009, “ Omani Bedouins' Readiness to Accept Solar Thermoelectric Refrigeration Systems,” Int. J. Energy Technol. Policy, 7(1), p. 127. [CrossRef]
Weiss, W. , Spörk-Dür, M. , and Mauthner, F. , 2017, “ Solar Heat Worldwide Global Market Development and Trends in 2016,” AEE - Institute for Sustainable Technologies, Gleisdorf, Austria, accessed Jul. 20, 2017, https://www.iea-shc.org/data/sites/1/publications/Solar-Heat-Worldwide-2017.pdf
Shahan, Z. , 2018, “ Solar Panel Prices Continue Falling Quicker Than Expected,” Clean Technica, accessed May 23, 2018, https://cleantechnica.com/2018/02/11/solar-panel-prices-continue-falling-quicker-expected-cleantechnica-exclusive/
Namrouqa, H. , 2014, “ Royal Cultural Centre, Irbid Commerce Chamber to Install Solar Cooling Units,” Jordan Times, Sep. 11. Retrieved from http://www.jordantimes.com/news/local/royal-cultural-centre-irbid-commerce-chamber-install-solar-cooling-units
MASDAR City, 2010, “ Exploring Masdar City,” The Future Build, Abu Dhabi, United Arab Emirates, accessed Jan. 1, 2017, https://www.thefuturebuild.com/assets/images/uploads/static/1745/masdar_city_exploring1.pdf
Henning, H.-M. , 2011, “ EA SHC Task 38 Solar Air Conditioning and Refrigeration - Solar Cooling Position Paper,” International Energy Agency (IEA), Paris, France, accessed Jan. 1, 2017, https://www.iea-shc.org/data/sites/1/publications/IEA-SHC-Solar-Cooling-Position-Paper.pdf
Regulation & Supervision Bureau, 2017, “ Installation of Solar PV Systems Installation of Solar PV Systems Guidance Document,” Regulation and Supervision Bureau, Abu Dhabi, United Arab Emirates, accessed Jan. 1, 2017, http://rsb.gov.ae/assets/documents/191857/solar_pv_installation_guidance_document.pdf


Grahic Jump Location
Fig. 1

Solar cooling cycles classification

Grahic Jump Location
Fig. 3

Interest in solar adsorption cooling in the MENA region with time

Grahic Jump Location
Fig. 4

Schematic of a single stage absorption cycle [41]

Grahic Jump Location
Fig. 5

Interest in solar absorption cooling in the MENA region with time

Grahic Jump Location
Fig. 6

Schematic of a Pennington cycle [70]

Grahic Jump Location
Fig. 7

Interest in solar solid desiccant cooling in the MENA region with time

Grahic Jump Location
Fig. 10

The ejector cycle [3]

Grahic Jump Location
Fig. 8

Schematic of a liquid desiccant system [3]

Grahic Jump Location
Fig. 9

Interest in solar liquid desiccant cooling in the MENA region with time

Grahic Jump Location
Fig. 11

Interest in solar ejector cooling in the MENA region with time

Grahic Jump Location
Fig. 15

Solar thermal cooling installations worldwide and in Europe [116]

Grahic Jump Location
Fig. 16

Global installed capacity and growth trends of solar thermal, wind, and photovoltaic power [116]

Grahic Jump Location
Fig. 12

Photovoltaic-driven vapor compression cycle [108]

Grahic Jump Location
Fig. 14

Share of solar cooling research in MENA countries

Grahic Jump Location
Fig. 13

Interest in solar electric cooling in the MENA region with time

Grahic Jump Location
Fig. 17

Price of solar panels and global solar panel installations over time [117]

Grahic Jump Location
Fig. 18

No. of articles on Science Direct using the keyword “solar”.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In