0
Research Papers

Thermal and Optical Efficiency Analysis of the Linear Fresnel Concentrator Compound Parabolic Collector Receiver

[+] Author and Article Information
H. Ajdad

Renewable Energy team, Department of Energy,
Ecole Nationale Supérieure d'Arts et Métiers,
Moulay Ismail University,
Marjane II, BP: 4024,
Beni Mhamed,
Meknes 50000, Morocco
e-mail: ajdad.cmi@gmail.com

Y. Filali Baba

Renewable Energy team, Department of Energy,
Ecole Nationale Supérieure d'Arts et Métiers,
Moulay Ismail University,
Marjane II, BP: 4024,
Beni Mhamed,
Meknes 50000, Morocco
e-mail: filalibabayousra@gmail.com

A. Al Mers

Renewable Energy team, Department of Energy,
Ecole Nationale Supérieure d'Arts et Métiers,
Moulay Ismail University,
Marjane II, BP: 4024,
Beni Mhamed,
Meknes 50000, Morocco
e-mail: almers_ahmed@gmail.com

O. Merroun

Laboratoire de Physico-Chimie des Matériaux
Appliqués (LPCMA),
Equipe Energies Nouvelles et Systèmes
Eco-Innovants,
Ecole Nationale Supérieure d'Arts et Métiers,
Avenue Nile 150,
Casablanca 20000, Morocco
e-mail: meroun.ossama@gmail.com

A. Bouatem

Renewable Energy team, Department of Energy,
Ecole Nationale Supérieure d'Arts et Métiers,
Moulay Ismail University,
Marjane II, BP: 4024,
Beni Mhamed,
Meknes 50000, Morocco
e-mail: bouatem1@hotmail.com

N. Boutammachte

Renewable Energy team, Department of Energy,
Ecole Nationale Supérieure d'Arts et Métiers, Moulay
Ismail University,
Marjane II, BP: 4024,
Beni Mhamed,
Meknes 50000, Morocco
e-mail: boutammachte@gmail.com

S. El Alj

Renewable Energy team, Department of Energy,
Ecole Nationale Supérieure d'Arts et Métiers,
Moulay Ismail University,
Marjane II, BP: 4024,
Beni Mhamed,
Meknes 50000, Morocco
e-mail: elalj.soukaina@gmail.com

S. Benyakhlef

Renewable Energy team, Department of Energy,
Ecole Nationale Supérieure d'Arts et Métiers,
Moulay Ismail University,
Marjane II, BP: 4024,
Beni Mhamed,
Meknes 50000, Morocco
e-mail: sara.benyakhlef07@gmail.com

1Corresponding author.

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received September 27, 2017; final manuscript received April 18, 2018; published online May 29, 2018. Assoc. Editor: Marc Röger.

J. Sol. Energy Eng 140(5), 051007 (May 29, 2018) (10 pages) Paper No: SOL-17-1402; doi: 10.1115/1.4040064 History: Received September 27, 2017; Revised April 18, 2018

A solar heating compound parabolic collector (CPC) using air and palm oil as heat carrier fluid is proposed and analyzed within this study via heat transfer and ray tracing simulations. The system is a linear focusing solar system intended to be used for applications across a broad range of industrial sectors for generating medium temperature heat up to 250 °C. The Monte Carlo ray tracing method was used to predict the optical performances of the receiver. We have developed a simplified thermal model to investigate and analyze the thermal performances of the receiver under different conditions. It has been demonstrated that the investigated receiver satisfactorily matches the heat demand by producing low and medium temperature heat with an annual system efficiency of 45%.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

IEA, 2014, “ Emissions Reduction Through Upgrade of Coal-Fired Power Plants,” International Energy Agency, Paris, France, Report. https://www.iea.org/publications/freepublications/publication/PartnerCountrySeriesEmissionsReductionthroughUpgradeofCoalFiredPowerPlants.pdf
Ministre de l'Energie, des Mines, de l'Eau et de l'Environnement, 2014, “ Programme Marocain de l'énérgie solaire,” Ministre de l'Energie, des Mines, de l'Eau et de l'Environnement.
Norton, B. , 2012, “ Industrial and Agricultural Applications of Solar Heat,” Comprehensive Renewable Energy, Elsevier, Amsterdam, The Netherlands, Chap. 3.17. [CrossRef]
Hautmann, G. , Seling, M. , and Mertins, M. , 2009, “ First European Linear Fresnel Power Plant in Operation-Operational Experience & Outlook,” 15th International SolarPACES Symposium on Solar Thermal Concentrating Technologies, Berlin, Sept. 15–18, Paper No. 16541.
Bernhard, R. , Laabs, H. G. , Lalaing, J. , Eck, M. , Eickhoff, M. , Pottler, K. , Morin, G. , Heimsath, A. , Georg, A. , and Häberle, A. , 2009, “ Linear Fresnel Collector Demonstration on the PSA—Part I: Design, Construction and Quality Control,” 15th International SolarPACES Symposium on Solar Thermal Concentrating Technologies, Berlin, Sept. 15–18, pp. 3–7.
Lin, M. , Sumathy, K. , Dai, Y. J. , Wang, R. Z. , and Chen, Y. , 2013, “ Experimental and Theoretical Analysis on a Linear Fresnel Reflector Solar Collector Prototype With V-Shaped Cavity Receiver,” Appl. Therm. Eng., 51(1–2), pp. 963–972. [CrossRef]
Mills, D. R. , and Morrison, G. L. , 2000, “ Compact Linear Fresnel Reflector Solar Thermal Power Plants,” Sol. Energy, 68(3), pp. 263–283. [CrossRef]
Abbas, R. , Muñoz, J. , and Martínez-Val, J. M. , 2012, “ Steady-State Thermal Analysis of an Innovative Receiver for Linear Fresnel Reflectors,” Appl. Energy, 92, pp. 503–515. [CrossRef]
Singh, P. L. , Sarviya, R. M. , and Bhagoria, J. L. , 2010, “ Thermal Performance of Linear Fresnel Reflecting Solar Concentrator With Trapezoidal Cavity Absorbers,” Appl. Energy, 87(2), pp. 541–550. [CrossRef]
Tíba, C. , and Fraidenraich, N. , 2011, “ Optical and Thermal Optimization of Stationary Non-Evacuated CPC Solar Concentrator With Fully Illuminated Wedge Receivers,” Renewable Energy, 36(9), pp. 2547–2553. [CrossRef]
Branda, B. , Fraidenraich, N. , Tiba, C. , and Vilela, O. C. , 2008, “ Analytic Solutions for the Geometric and Optical Properties of Stationary Compound Parabolic Concentrators With Fully Illuminated Inverted V Receiver,” Sol. Energy, 82(2), pp. 132–143. [CrossRef]
Gu, X. , Taylor, R. A. , Morrison, G. , and Rosengarten, G. , 2014, “ Theoretical Analysis of a Novel, Portable, CPC-Based Solar Thermal Collector for Methanol Reforming,” Appl. Energy, 119, pp. 467–475. [CrossRef]
Kalogirou, S. A. , 2004, “ Solar Thermal Collectors and Applications,” Prog. Energy Combust. Sci., 30(3), pp. 231–295. [CrossRef]
Xu, G. , Song, G. , Zhu, X. , Gao, W. , Li, H. , and Quan, Y. , 2015, “ Performance Evaluation of a Direct Vapor Generation Supercritical ORC System Driven by Linear Fresnel Reflector Solar Concentrator,” Appl. Therm. Eng., 80, pp. 196–204. [CrossRef]
Zhu, G. , 2013, “ Development of an Analytical Optical Method for Linear Fresnel Collectors,” Sol. Energy, 94, pp. 240–252. [CrossRef]
Spencer, G. H. , and Murty, M. V. R. K. , 1962, “ General Ray-Tracing Procedure,” J. Opt. Soc. Am., 52(6), pp. 672–678. [CrossRef]
Al Mers, A. , El Alj, S. , Ajdad, H. , Benyakhlef, S. , Bouatem, A. , Boutammacht, N. , and Merroun, O. , 2014, “ Preliminary Monte-Carlo Ray Tracing Code for Modeling Linear Fresnel Systems,” Fifth International Renewable Energy Congress (IREC), Hammamet, Tunisia, Mar. 25–27.
El Alj, S. , Al Mers, A. , Boutammachte, N. , Bouatem, A. , and Merroun, O. , 2014, “ Modeling and Simulation of a Linear Fresnel Solar Collector,” International Renewable and Sustainable Energy Conference (IRSEC), Ouarzazate, Morocco, Oct. 17–19, p. 770.
Raithby, G. D. , and Hollands, K. G. T. , 1974, “ Laminar and Turbulent Heat Transfer by Natural Convection,” Int. J. Heat Mass Transfer, 17(12), pp. 1620–1622. [CrossRef]
Veynandt, F. , 2011, “ Cogénération héliothermodynamique avec concentrateur linéaire de Fresnel: modélisation de l'ensemble du procédé,” Doctoral dissertation, INP, Toulouse, France.
Kuehn, T. H. , and Goldstein, R. J. , 1976, “ An Experimental and Theoretical Study of Natural Convection in the Annulus Between Horizontal Concentric Cylinders,” J. Fluid Mech., 74(4), pp. 695–719. [CrossRef]
Incropera, F. P. , DeWitt, D. P. , Bergman, T. L. , and Lavine, A. S. , 2006, Fundamentals of Heat and Mass Transfer, 6th ed., Wiley, Hoboken, NJ.
ANSYS Workbench, 2009, “ FLUENT 12.0. User's Guide,” ANSYS, Inc., Canonsburg, PA.

Figures

Grahic Jump Location
Fig. 1

Schematic representation of the LFR solar field with a cavity receiver

Grahic Jump Location
Fig. 2

Distribution of heat fluxes exchanged within the cavity of the receiver

Grahic Jump Location
Fig. 3

General flowchart of the thersol code

Grahic Jump Location
Fig. 4

Temperature of the air fluid versus the fluid speed obtained with thersol and fluent CFD code

Grahic Jump Location
Fig. 5

Temperature of the receiver elements versus the power received by the absorber tube obtained with thersol and fluent CFD code: (a) secondary reflector, (b) absorber surface, and (c) glass pane

Grahic Jump Location
Fig. 6

Ray tracing simulation for perpendicular incident radiation and for a (a) focal point fp1 = 8 cm, (b) focal point fp2 = 12 cm, and (c) focal point fp3 = 16 cm

Grahic Jump Location
Fig. 7

Evolution of the receiver optical efficiency versus the absorber tube position above the glass pane along the day 22 June for three focus points: fp1 = 8 cm, fp2 = 12 cm, and fp3 = 16 cm

Grahic Jump Location
Fig. 8

Evolution of the thermal efficiency, optical efficiency, and the geometrical concentrating factor of the receiver versus the tube diameter

Grahic Jump Location
Fig. 9

Thermal efficiency of the receiver depending on the maximum receiver temperature for different tube diameters

Grahic Jump Location
Fig. 10

Total thermal losses variation with absorber temperature for different tube diameters

Grahic Jump Location
Fig. 11

Ration between radiative and convective heat losses variation with absorber temperature for different tube diameters

Grahic Jump Location
Fig. 12

Annual optical, thermal, and system efficiency obtained for different absorber diameters

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In