Technical Brief

Incidence-Angle- and Wavelength-Resolved Ray-Tracing Simulations of a Linear Fresnel Collector Using the In-House Software otsun

[+] Author and Article Information
Julian D. Hertel

Department of Physics,
Universitat de les Illes Balears,
Ctra. de Valldemossa km 7.5,
Palma de Mallorca 07122, Illes Balears, Spain
e-mail: julian.hertel@uib.es

Francesc Bonnín-Ripoll

Department of Physics,
Universitat de les Illes Balears,
Ctra. de Valldemossa km 7.5,
Palma de Mallorca 07122, Illes Balears, Spain
e-mail: f.bonnin@uib.cat

Víctor Martínez-Moll

Department of Physics,
Universitat de les Illes Balears,
Ctra. de Valldemossa km 7.5,
Palma de Mallorca 07122, Illes Balears, Spain
e-mail: victor.martinez@uib.es

Ramón Pujol-Nadal

Department of Physics,
Universitat de les Illes Balears,
Ctra. de Valldemossa km 7.5,
Palma de Mallorca 07122, Illes Balears, Spain
e-mail: ramon.pujol@uib.es

1Corresponding author.

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received June 15, 2017; final manuscript received January 19, 2018; published online March 13, 2018. Assoc. Editor: Marc Röger.

J. Sol. Energy Eng 140(3), 034502 (Mar 13, 2018) (7 pages) Paper No: SOL-17-1233; doi: 10.1115/1.4039329 History: Received June 15, 2017; Revised January 19, 2018

The set of optical models that is implemented in ray-tracing software determines the accuracy of its output. A sensitivity analysis was carried out using a powerful in-house program, which provides a large number of surface reflectance and scattering models and in addition, can also run spectral simulations. A linear Fresnel collector was selected as a test case together with the most accurate data that can be found in the literature for the optical properties of its components. The test results indicate that simulations based on constant values, such as mostly provided by the manufacturer, are generally inaccurate and a spectral simulation is not essential for thermal applications.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


El Alj, S. , Al Mers, A. , Merroun, O. , Bouatem, A. , Boutammachte, N. , Ajdad, H. , Benyakhlef, S. , and Filali Baba, Y. , 2017, “Optical Modeling and Analysis of the First Moroccan Linear Fresnel Solar Collector Prototype,” ASME J. Sol. Energy Eng., 139(4), p. 041009. [CrossRef]
Li, X. , Lin, M. , Dai, Y. , and Wang, C.-H. , 2017, “Comparison-Based Optical Assessment of Hyperboloid and Ellipsoid Reflectors in a Beam-Down Solar Tower System With Linear Fresnel Heliostats,” ASME J. Sol. Energy Eng., 139(6), p. 061003. [CrossRef]
Pujol Nadal, R. , and Martínez Moll, V. , 2013, “Optical Analysis of a Curved-Slats Fixed-Mirror Solar Concentrator by a Forward Ray-Tracing Procedure,” Appl. Opt., 52(30), pp. 7389–7398. [CrossRef] [PubMed]
Fahr, S. , Kramer, K. , Delmas, P. , Heimsath, A. , Fernández-García, A. , Valenzuela-Gutiérrez, L. , Sallaberry, F. , Hofer, A. , van Rooyen, D. W. , Mehnert, S. , Osório, T. , and Horta, P. , 2016, “Guideline on Testing Procedures for Collectors Used in Solar Process Heat,” International Energy Agency, Paris, France, Technical Report No. A.3.1.
IEA, 2017, “Task 57—Solar Standards and Certification,” International Energy Agency, Paris, France, accessed June 2, 2017, http://task57.iea-shc.org/
Osório, T. , Horta, P. , Larcher, M. , Pujol-Nada, R. , Hertel, J. , and Van Rooyen, D. W. , 2016, “Ray-Tracing Software Comparison for Linear Focusing Solar Collectors,” AIP Conf. Proc., 1734(1), p. 20017.
Sutter, F. , Montecchi, M. , von Dahlen, H. , Fernández-García, A. , and Röger, M. , 2018, “The Effect of Incidence Angle on the Reflectance of Solar Mirrors,” Sol. Energy Mater. Sol. Cells, 176, pp. 119–133. [CrossRef]
Atkinson, C. , Sansom, C. L. , Almond, H. J. , and Shaw, C. P. , 2015, “Coatings for Concentrating Solar Systems—A Review,” Renewable Sustainable Energy Rev., 45, pp. 113–122. [CrossRef]
Hertel, J. D. , Martínez-Moll, V. , Pujol-Nadal, R. , and Bonnín, F. , 2016, “State of the Art of Radiation-Matter Interaction Models Applied for the Optical Characterization of Concentrating Solar Collectors,” EuroSun Conference, Palma de Mallorca, Spain, Oct. 12–14.
Horta, P. , and Osório, T. , 2014, “Optical Characterization Parameters for Line-Focusing Solar Concentrators: Measurement Procedures and Extended Simulation Results,” Energy Procedia, 49, pp. 98–108. [CrossRef]
Troparevsky, M. C. , Sabau, A. S. , Lupini, A. R. , and Zhang, Z. , 2010, “Transfer-Matrix Formalism for the Calculation of Optical Response in Multilayer Systems: From Coherent to Incoherent Interference,” Opt. Express, 18(24), pp. 24715–24721. [CrossRef] [PubMed]
Sutter, F. , Ziegler, S. , Schmücker, M. , Heller, P. , and Pitz-Paal, R. , 2012, “Modelling of Optical Durability of Enhanced Aluminum Solar Reflectors,” Sol. Energy Mater. Sol. Cells, 107, pp. 37–45. [CrossRef]
Pettit, R. B. , 1977, “Characterization of the Reflected Beam Profile of Solar Mirror Materials,” Sol. Energy, 19(6), pp. 733–741. [CrossRef]
Gee, R. , Brost, R. , Zhu, G. , and Jorgensen, G. , 2010, “An Improved Method for Characterizing Reflector Specularity for Parabolic Trough Concentrators,” SolarPACES Conference, Perpignan, France, Sept. 21–24, p. 2124. https://pdfs.semanticscholar.org/cc53/8b9453fdfbfe78148efeab3f2712ac3e2cb0.pdf
Good, P. , Cooper, T. , Querci, M. , Wiik, N. , Ambrosetti, G. , and Steinfeld, A. , 2015, “Spectral Reflectance, Transmittance, and Angular Scattering of Materials for Solar Concentrators,” Sol. Energy Mater. Sol. Cells, 144, pp. 509–522. [CrossRef]
Sutter, F. , Meyen, S. , Fernández-García, A. , and Heller, P. , 2016, “Spectral Characterization of Specular Reflectance of Solar Mirrors,” Sol. Energy Mater. Sol. Cells, 145(Pt. 3), pp. 248–254. [CrossRef]
Good, P. , Cooper, T. , Querci, M. , Wiik, N. , Ambrosetti, G. , and Steinfeld, A. , 2015, “Spectral Reflectance, Transmittance, and Angular Scattering of Materials for Solar Concentrators,” Data Brief, 6(2016), pp. 184–188. [CrossRef] [PubMed]
Zhu, G. , and Lewandowski, A. , 2012, “A New Optical Evaluation Approach for Parabolic Trough Collectors: First-Principle OPTical Intercept Calculation,” ASME J. Sol. Energy Eng., 134(4), p. 041005. [CrossRef]
Zhu, G. , 2013, “Development of an Analytical Optical Method for Linear Fresnel Collectors,” Sol. Energy, 94, pp. 240–252. [CrossRef]
An, L. , Ali, S. T. , Søndergaard, T. , Nørgaard, J. , Tsao, Y. C. , and Pedersen, K. , 2015, “Optimization of TiAlN/TiAlON/Si3N4 Solar Absorber Coatings,” Sol. Energy, 118, pp. 410–418. [CrossRef]
Grena, R. , 2010, “Optical Simulation of a Parabolic Solar Trough Collector,” Int. J. Sustainable Energy, 29(1), pp. 19–36. [CrossRef]
Filmetrics, 2017, “Refractive Index Database,” Filmetrics Inc., San Diego, CA, accessed May 4, 2017, http://www.filmetrics.com/refractive-index-database
RefractiveIndex, 2017, “Refractive Index Database,” RefractiveIndex, accessed May 4, 2017, http://refractiveindex.info/?shelf=main&book=Al&page =Rakic
Pujol-Nadal, R. , and Martínez-Moll, V. , 2012, “Optical Analysis of the Fixed Mirror Solar Concentrator by Forward Ray-Tracing Procedure,” ASME J. Sol. Energy Eng., 134(3), p. 031009. [CrossRef]
Pujol-Nadal, R. , 2014, “Optical Characterization of a Fixed Mirror Solar Concentrator Prototype by the Ray-Tracing Procedure,” J. Renewable Sustainable Energy, 6(4), p. 43105. [CrossRef]
Sallaberry, F. , Pujol-Nadal, R. , Martínez-Moll, V. , and Torres, J.-L. , 2014, “Optical and Thermal Characterization Procedure for a Variable Geometry Concentrator: A Standard Approach,” Renewable Energy, 68, pp. 842–852. [CrossRef]
Pujol-Nadal, R. , Martínez-Moll, V. , Sallaberry, F. , and Moià-Pol, A. , 2015, “Optical and Thermal Characterization of a Variable Geometry Concentrator Using Ray-Tracing Tools and Experimental Data,” Appl. Energy, 155, pp. 110–119. [CrossRef]
NREL, 2016, “Reference Solar Spectral Irradiance: Air Mass 1.5,” National Renewable Energy Laboratory, Lakewood, CO, accessed May 4, 2017, http://rredc.nrel.gov/solar/spectra/am1.5/
Schlick, C. , 1994, “An Inexpensive BRDF Model for Physically—Based Rendering,” Comput. Graphics Forum, 13(3), pp. 233–246. [CrossRef]
Tesfamichael, T. , and Wäckelgård, E. , 1999, “Angular Solar Absorptance of Absorbers Used in Solar Thermal Collectors,” Appl. Opt., 38(19), pp. 4189–4197. [CrossRef] [PubMed]
Lazányi, I. , and Szirmay-Kalos, L. , 2005, “Fresnel Term Approximations for Metals,” 13th International Conference in Central Europe on. Computer Graphics, Visualization and Computer Vision (WSCG), Plzen, Czech Republic, Jan. 31–Feb. 4, pp. 77–80. http://sirkan.iit.bme.hu/~szirmay/fresnel.pdf
Buie, D. , Dey, C. J. , and Bosi, S. , 2003, “The Effective Size of the Solar Cone for Solar Concentrating Systems,” Sol. Energy, 74(5), pp. 417–427. [CrossRef]
Heimsath, A. , Lindner, P. , Klimm, E. , Schmid, T. , Moreno, K. O. , Elon, Y. , Am-Shallem, M. , and Nitz, P. , 2016, “Specular Reflectance of Soiled Glass Mirrors—Study on the Impact of Incidence Angles,” AIP Conf. Proc., 1734(1), p. 130009.


Grahic Jump Location
Fig. 1

Description of the reference case. (a) Geometry of the collector. (b)–(d) Respective thin-film assembly of surface-treated component and an exemplary cross-sectional curve of its TMM reflectance surface R(λ,θ) at normal incidence.

Grahic Jump Location
Fig. 2

Scattering model of Good et al. [15]. Measured points versus the analytical factorization model for the variance of specular dispersion.

Grahic Jump Location
Fig. 3

Overview of the simulation cases

Grahic Jump Location
Fig. 4

Comparison of analytical models (Eqs. (7)(9) and (11)) with the solar weighted surface reflectance of the material configurations of Sec. 2

Grahic Jump Location
Fig. 5

Results for angle- versus wavelength-resolved simulations

Grahic Jump Location
Fig. 6

Difference between full parameter and incidence-angle-resolved simulations for different scattering variances and without considering macro errors

Grahic Jump Location
Fig. 7

Difference between full parameter and 1D surface reflectance model simulations




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In