Maxwell,
J. C.
, 1881, A Treatise on Electricity and Magnetism, 2nd ed., Vol.
1,
Clarendon Press,
Oxford, UK.
Alim,
M. A.
,
Abdin,
Z.
,
Saidur,
R.
,
Hepbasli,
A.
,
Khairul,
M. A.
, and
Rahim,
N. A.
, 2013, “
Analyses of Entropy Generation and Pressure Drop for a Conventional Flat Plate Solar Collector Using Different Types of Metal Oxide Nanofluids,” Energy Buildings,
66, pp. 289–296.
Chaji,
H.
,
Ajabshirchi,
Y.
,
Esmaeilzadeh,
E.
,
Zeinali Heris,
S.
,
Hedayatizadeh,
M.
, and
Kahani,
M.
, 2013, “
Experimental Study on Thermal Efficiency of Flat Plate Solar Collector Using TiO
2/Water Nanofluid,” Mod. Appl. Sci.,
7(10), pp. 60–69.
[CrossRef]
Moghadam,
A. J.
,
Farzane-Gord,
M.
,
Sajadi,
M.
, and
Hoseyn-Zadeh,
M.
, 2014, “
Effects of CuO/Water Nanofluid on the Efficiency of a Flat-Plate Solar Collector,” Exp. Therm. Fluid Sci.,
58, pp. 9–14.
[CrossRef]
Nasersharifi,
Y.
, and
Khalaji Assadi,
M.
, 2014, “
Experimental Study of Efficiency Enhancement of a Flat Plate Solar Collector Using a Cu-Ag Based Nanofluid,” First International Conference and Exhibition on Solar Energy (ICESE), Tehran, Iran, May 19–20, pp. 133–141.
Nasrin,
R.
,
Salma,
P.
, and
Ma,
A.
, 2014, “
Heat Transfer by Nanofluids Through a Flat Plate Solar Collector,” Procedia Eng.,
90, pp. 364–370.
[CrossRef]
Mahian,
O.
,
Kianifar,
A.
,
Sahin,
A. Z.
, and
Wongwises,
S.
, 2014, “
Performance Analysis of a Minichannel-Based Solar Collector Using Different Nanofluids,” Energy Convers. Manage.,
88, pp. 129–138.
[CrossRef]
Said,
Z.
,
Saidur,
R.
,
Rahim,
N. A.
, and
Alim,
M. A.
, 2014, “
Analyses of Exergy Efficiency and Pumping Power for a Conventional Flat Plate Solar Collector Using SWCNTs Based Nanofluid,” Energy Build.,
78, pp. 1–9.
[CrossRef]
Michael,
J. J.
, and
Iniyan,
S.
, 2015, “
Performance of Copper Oxide/Water Nanofluid in a Flat Plate Solar Water Heater Under Natural and Forced Circulations,” Energy Convers. Manage.,
95, pp. 160–169.
[CrossRef]
Meibodi,
S. S.
,
Kianifar,
A.
,
Niazmand,
H.
,
Mahian,
O.
, and
Wongwises,
S.
, 2015, “
Experimental Investigation on the Thermal Efficiency and Performance Characteristics of a Flat Plate Solar Collector Using SiO
2/EG–Water Nanofluids,” Int. Commun. Heat Mass Transfer,
65, pp. 71–75.
[CrossRef]
Said,
Z.
,
Sabiha,
M. A.
,
Saidur,
R.
,
Hepbasli,
A.
,
Rahim,
N. A.
,
Mekhilef,
S.
, and
Ward,
T. A.
, 2015, “
Performance Enhancement of a Flat Plate Solar Collector Using Titanium Dioxide Nanofluid and Polyethylene Glycol Dispersant,” J. Cleaner Prod.,
92, pp. 343–353.
[CrossRef]
Said,
Z.
,
Saidur,
R.
, and
Rahim,
N. A.
, 2016, “
Energy and Exergy Analysis of a Flat Plate Solar Collector Using Different Sizes of Aluminium Oxide Based Nanofluid,” J. Cleaner Prod.,
133, pp. 518–530.
[CrossRef]
Said,
Z.
,
Saidur,
R.
,
Sabiha,
M. A.
,
Hepbasli,
A.
, and
Rahim,
N. A.
, 2016, “
Energy and Exergy Efficiency of a Flat Plate Solar Collector Using
pH Treated Al
2O
3 Nanofluid,” J. Cleaner Prod.,
112(Pt. 5), pp. 3915–3926.
[CrossRef]
Arockiaraj,
S.
, and
Jidhesh,
P.
, 2016, “
Effect of Nano Fluids in Solar Flat Plate Collector Systems,” Int. J. Eng. Comput. Sci.,
5(10), pp. 18404–18412.
Colangelo,
G.
, and
Marco,
M.
, 2017, “
Numerical Simulation of Thermal Efficiency of an Innovative Al
2O
3 Nanofluid Solar Thermal Collector: Influence of Nanoparticles Concentration,” Therm. Sci.,
21(6 Pt. B), pp. 2769–2779.
[CrossRef]
Visconti,
P.
,
Primiceri,
P.
,
Costantini,
P.
,
Colangelo,
G.
, and
Cavalera,
G.
, 2016, “
Measurement and Control System for Thermo-Solar Plant and Performance Comparison Between Traditional and Nanofluid Solar Thermal Collectors,” Int. J. Smart Sens. Intell. Syst.,
9(3), pp. 1220–1242.
Verma,
S. K.
,
Tiwari,
A. K.
, and
Chauhan,
D. S.
, 2017, “
Experimental Evaluation of Flat Plate Solar Collector Using Nanofluids,” Energy Convers. Manage.,
134, pp. 103–115.
[CrossRef]
Moghadam,
M. C.
,
Edalatpour,
M.
, and
Solano,
J. P.
, 2017, “
Numerical Study on Conjugated Laminar Mixed Convection of Alumina/Water Nanofluid Flow, Heat Transfer, and Entropy Generation Within a Tube-on-Sheet Flat Plate Solar Collector,” ASME J. Sol. Energy Eng.,
139(4), p. 041011.
[CrossRef]
Witmer,
L.
, and
Fedkin,,
M. V.
, 2017, “
Solar Thermal Energy for Utilities and Industry,” The Pennsylvania State University, University Park, PA, accessed Jan. 27, 2018,
https://www.e-education.psu.edu/eme811/node/508
Sharma,
K. V.
,
Sarm,
P. K.
,
Azmi,
W. H.
,
Mamat,
R.
, and
Kadirgama,
K.
, 2012, “
Correlations to Predict Friction and Forced Convection Heat Transfer Coefficients of Water Based Nanofluids for Turbulent Flow in a Tube,” Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom.,
3(4), p. 283.
Cabaleiro,
D.
,
Gracia-Fernández,
C.
,
Legido,
J. L.
, and
Lugo,
L.
, 2015, “
Specific Heat of Metal Oxide Nanofluids at High Concentrations for Heat Transfer,” Int. J. Heat Mass Transfer,
88, pp. 872–879.
[CrossRef]
Xuan,
Y. M.
, and
Li,
Q.
, 2003, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids,” ASME J. Heat Transfer,
125(1), pp. 151–155.
Ramires,
M. L. V.
,
Carlos A,
N. D. C.
,
Nagasaka,
Y.
,
Nagashima,
A.
,
Assael,
M. J.
, and
Wakeham,
W. A.
, 1995, “
Standard Reference Data for the Thermal Conductivity of Water,” J. Phys. Chem. Ref. Data,
24(3), pp. 1377–1381.
[CrossRef]
Brinkman,
H. C.
, 1952, “
The Viscosity of Concentrated Suspensions and Solutions,” J. Chem. Phys.,
20(4), pp. 571–571.
[CrossRef]
Khanafer,
K.
, and
Vafai,
K.
, 2011, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids,” Int. J. Heat Mass Transfer,
54(19), pp. 4410–4428.
[CrossRef]
Duffie,
J. A.
, and
William,
A. B.
, 2013, Solar Engineering of Thermal Processes, 4th ed.,
Wiley,
New York.
[CrossRef]
Kalogirou,
S. A.
, 2013, Solar Energy Engineering: Processes and Systems,
Academic Press, San Diego, CA.
Mahian,
O.
,
Kianifar,
A.
,
Sahin,
A. Z.
, and
Wongwises,
S.
, 2014, “
Entropy Generation During Al
2O
3/Water Nanofluid Flow in a Solar Collector: Effects of Tube Roughness, Nanoparticle Size, and Different Thermophysical Models,” Int. J. Heat Mass Transfer,
78, pp. 64–75.
[CrossRef]
Badescu,
V.
, 2014, “
How Much Work Can Be Extracted From a Radiation Reservoir?,” Phys. A: Stat. Mech. Appl.,
410, pp. 110–119.
[CrossRef]
Badescu,
V.
, 2015, “
Maximum Reversible Work Extraction From a Blackbody Radiation Reservoir. A Way to Closing the Old Controversy,” Europhys. Lett.,
109(4), p. 40008.
[CrossRef]
Landsberg,
P. T.
, and
Badescu,
V.
, 2000, “
The Geometrical Factor of Spherical Radiation Sources,” Europhys. Lett.,
50(6), p. 816.
[CrossRef]
Kalogirou,
S. A.
,
Karellas,
S.
,
Braimakis,
K.
,
Stanciu,
C.
, and
Badescu,
V.
, 2016, “
Exergy Analysis of Solar Thermal Collectors and Processes,” Prog. Energy Combust. Sci.,
56, pp. 106–137.
[CrossRef]
Kalogirou,
S. A.
,
Karellas,
S.
,
Badescu,
V.
, and
Braimakis,
K.
, 2016, “
Exergy Analysis on Solar Thermal Systems: A Better Understanding of Their Sustainability,” Renewable Energy,
85, pp. 1328–1333.
[CrossRef]
Suzuki,
A.
, 1988, “
A Fundamental Equation for Exergy Balance on Solar Collectors,” ASME J. Sol. Energy Eng.,
110(2), pp. 102–106.
[CrossRef]
Facão,
J.
, 2015, “
Optimization of Flow Distribution in Flat Plate Solar Thermal Collectors With Riser and Header Arrangements,” Sol. Energy,
120, pp. 104–112.
[CrossRef]
Owolabi,
A. L.
,
Hussain H,
A.-K.
, and
Baheta,
A. T.
, 2016, “
Nanoadditives Induced Enhancement of the Thermal Properties of Paraffin-Based Nanocomposites for Thermal Energy Storage,” Sol. Energy,
135, pp. 644–653.
[CrossRef]
Khalaji Assadi,
M.
, and
Nasersharifi,
Y.
, 2014, “
Investigation and Measurement of Copper Nanofluid Impact on Thermal Efficiency of Solar Collectors,” MATEC Web of Conf.,
13, p. 02014.
Meibodi,
S. S.
,
Ali,
K.
,
Omid,
M.
, and
Somchai,
W.
, 2016, “
Second Law Analysis of a Nanofluid-Based Solar Collector Using Experimental Data,” J. Therm. Anal. Calorim.,
126(2), pp. 617–625.
[CrossRef]