0
Research Papers

Building Integrated Photovoltaic Module-Based on Aluminum Substrate With Forced Water Cooling

[+] Author and Article Information
Wei Pang, Yongzhe Zhang, Hongwen Yu

The College of Materials Science
and Engineering,
Beijing University of Technology,
Beijing 100124, China

Yanan Cui

The College of Materials Science
and Engineering,
Wuhan University of Technology,
Wuhan 430070, China

Yu Liu

The College of Mechanical Engineering,
Jiangnan University,
Wuxi 214122, China

Hui Yan

The College of Materials Science
and Engineering,
Beijing University of Technology,
Beijing 100124, China
e-mail: hyan@bjut.edu.cn

1Corresponding author.

Manuscript received April 23, 2017; final manuscript received December 12, 2017; published online January 22, 2018. Assoc. Editor: Ming Qu.

J. Sol. Energy Eng 140(2), 021005 (Jan 22, 2018) (5 pages) Paper No: SOL-17-1153; doi: 10.1115/1.4038787 History: Received April 23, 2017; Revised December 12, 2017

The increase of operating temperature on a photovoltaic (PV) cell degrades its electrical efficiency. This paper is organized to describe our latest design of an aluminum substrate—based photovoltaic/thermal (PV/T) system. The electrical efficiency of the proposed PV/T can be increased by ∼ 20% in comparison with a conventional glass substrate-based PV. The work will benefit hybrid utilization of solar energy in development of building integrated photovoltaic systems.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Yoo, S.-H. , Lee, E.-T. , and Lee, J.-K. , 1998, “ Building Integrated Photovoltaics: A Korea Case Study,” Sol. Energy, 64(4–6), pp. 151–161. [CrossRef]
Yoo, S.-H. , and Lee, E.-T. , 2002, “ Efficiency Characteristic of Building Integrated Photovoltaics as a Shading Device,” Build. Environ., 37(6), pp. 615–623. [CrossRef]
Benemann, J. , Chehab, O. , and Gabriel, E. S. , 2001, “ Building-Integrated PV Modules,” Sol. Energy Mater. Sol. Cells, 67(1–4), pp. 345–354. [CrossRef]
Peng, C. , Huang, Y. , and Wu, Z. , 2011, “ Building-Integrated Photovoltaics (BIPV) in Architectural Design in China,” Energy Build., 43(12), pp. 3592–3598. [CrossRef]
Nishioka, K. , Hatayama, T. , Uraoka, Y. , Fuyuki, T. , Hagihara, R. , and Watanabe, M. , 2003, “ Field Test Analysis of PV System Output Characteristics Focusing on Module Temperature,” Sol. Energy Mater. Sol. Cells, 75(3–4), pp. 665–671. [CrossRef]
Skoplaki, E. , and Palyvos, J. A. , 2009, “ On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations,” Sol. Energy, 83(5), pp. 614–624. [CrossRef]
Jiang, J. A. , Wang, J. C. , Kuo, K. C. , Su, Y. L. , Shieh, J. C. , and Chou, J. J. , 2012, “ Analysis of the Junction Temperature and Thermal Characteristics of Photovoltaic Modules Under Various Operation Conditions,” Energy, 44(1), pp. 292–301. [CrossRef]
Dolara, A. , Leva, S. , and Manzolini, G. , 2015, “ Comparison of Different Physical Models for PV Power Output Prediction,” Sol. Energy, 119, pp. 83–99. [CrossRef]
Skoplaki, E. , and Palyvos, J. A. , 2009, “ Operating Temperature of Photovoltaic Modules: A Survey of Pertinent Correlations,” Renewable Energy, 34(1), pp. 23–29. [CrossRef]
Sahay, A. , Sethi, V. K. , Tiwari, A. C. , and Pandey, M. , 2015, “ A Review of Solar Photovoltaic Panel Cooling Systems With Special Reference to Ground Coupled Central Panel Cooling System (GC-CPCS),” Renewable Sustainable Energy Rev., 42, pp. 306–312. [CrossRef]
Makki, A. , Omer, S. , and Sabir, H. , 2015, “ Advancements in Hybrid Photovoltaic Systems for Enhanced Solar Cells Performance,” Renewable Sustainable Energy Rev., 41, pp. 658–684. [CrossRef]
Michael, J. J. , Iniyan, S. , and Goic, R. , 2015, “ Flat Plate Solar Photovoltaic–Thermal (PV/T) Systems: A Reference Guide,” Renewable Sustainable Energy Rev., 51, pp. 62–88. [CrossRef]
Thiel, A. M. , Jamet, A. , Sant, G. , and Pilon, L. , 2015, “ Annual Energy Analysis of Concrete Containing Phase Change Materials for Building Envelopes,” Energy Convers. Manage., 103, pp. 374–386. [CrossRef]
Valeh-e-Sheyda, P. , Rahimi, M. , Karimi, E. , and Asadi, M. , 2013, “ Application of Two-Phase Flow for Cooling of Hybrid Microchannel PV Cells: A Comparative Study,” Energy Convers. Manage., 69, pp. 122–130. [CrossRef]
Brendel, R. , 1997, “ A Novel Process for Ultrathin Monocrystalline Silicon Solar Cells on Glass,” 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, June 6–10, p. 1354.
Bergmann, R. B. , Rinke, T. J. , Hausner, R. M. , Grauvogl, M. , Vetter, M. , and Werner, J. H. , 1999, “ Thin Film Solar Cells on Glass by Transfer of Monocrystalline Si Films,” Int. J. Photoenergy, 1(2), pp. 89–93. [CrossRef]
Yamamoto, K. , Yoshimi, M. , Tawada, Y. , Okamoto, Y. , Nakajima, A. , and Igari, S. , 1999, “ Thin-Film Poly-Si Solar Cells on Glass Substrate Fabricated at Low Temperature,” Appl. Phys. A, 69(2), pp. 179–185. [CrossRef]
Klutha, O. , Recha, B. , Houbena, L. , Wiedera, S. , Schöpea, G. , Benekinga, C. , Wagnera, H. , Löfflb, A. , and Schockb, H. W. , 1999, “ Texture Etched ZnO: Al Coated Glass Substrates for Silicon Based Thin Film Solar Cells,” Thin Solid Films, 351(1–2), pp. 247–253. [CrossRef]
Shaha, A. , Meierb, J. , Buechelb, A. , Krollb, U. , Steinhausera, J. , Meillauda, F. , Schadec, H. , and Dominéa, D. , 2006, “ Towards Very Low-Cost Mass Production of Thin-Film Silicon Photovoltaic (PV) Solar Modules on Glass,” Thin Solid Films, 502(1–2), pp. 292–299. [CrossRef]
Gorter, T. , and Reinders, A. , 2012, “ A Comparison of 15 Polymers for Application in Photovoltaic Modules in PV-Powered Boats,” Appl. Energy, 92, pp. 286–297. [CrossRef]
Yazici, S. , Olgar, M. A. , Akca, F. G. , Cantas, A. , Kurt, M. , Aygun, G. , Tarhan, E. , Yanmaz, E. , and Ozyuzer, L. , 2015, “ Growth of Cu2ZnSnS4 Absorber Layer on Flexible Metallic Substrates for Thin Film Solar Cell Applications,” Thin Solid Films, 589, pp. 563–573. [CrossRef]
Mittiga, A. , Salza, E. , Sarto, F. , Tucci, M. , and Vasanthi, R. , 2006, “ Heterojunction Solar Cell With 2% Efficiency Based on a Cu2O Substrate,” Appl. Phys. Lett., 88(16), p. 163502. [CrossRef]
Fan, Z. , Razavi, H. , Do, J. , Moriwaki, A. , Ergen, O. , Chueh, Y. , Leu, P. W. , Ho, J. C. , Takahashi, T. , Reichertz, L. A. , Neale, S. , Yu, K. , Wu, M. , Ager, J. W. , and Javey, A. , 2009, “ Three-Dimensional Nanopillar-Array Photovoltaics on Low-Cost and Flexible Substrates,” Nat. Mater., 8, pp. 648–653. [CrossRef] [PubMed]
Martínez, A. L. , Menéndez, A. , Sánchez, P. , Andrés, L. J. , Menéndez, M. F. , Izard, J. , Sánchez, B. , and Gómez, D. , 2016, “ Solar Photovoltaic Technology on Rough Low Carbon Steel Substrates for Building Integrated Photovoltaics: A Complete Fabrication Sequence,” Sol. Energy, 124, pp. 216–226. [CrossRef]
Maurus, H. , Schmid, M. , Blersch, B. , Lechner, P. , and Schade, H. , 2004, “ PV for Buildings: Benefits and Experiences With Amorphous Silicon in BIPV Applications,” Refocus, 5(6), pp. 22–27. [CrossRef]
Henemann, A. , 2008, “ BIPV: Built-in Solar Energy,” Renewable Energy Focus, 9(6), pp. 14–19. [CrossRef]
Dharmendra, C. , Rao, K. P. , Wilden, J. , and Reich, S. , 2011, “ Study on Laser Welding–Brazing of Zinc Coated Steel to Aluminum Alloy With a Zinc Based Filler,” Mater. Sci. Eng. A, 528(3), pp. 1497–1503. [CrossRef]
Mathieu, A. , Pontevicci, S. , Viala, J. , Vial, J. , Cicala, E. , Matte, S. , and Grevey, D. , 2006, “ Laser Brazing of a Steel/Aluminium Assembly With Hot Filler Wire (88% Al, 12% Si),” Mater. Sci. Eng. A, 435–436, pp. 19–28. [CrossRef]
Gonzale, M. C. , and Carrol, J. J. , 1994, “ Solar Cells Efficiency Variations With Varying Atmospheric Conditions,” Sol. Energy, 53(5), pp. 395–402. [CrossRef]
Radziemska, E. , and Klugmann, E. , 2002, “ Thermally Affected Parameters of the Current–Voltage Characteristics of Silicon Photocell,” Energy Convers. Manage., 43(14), pp. 1889–1900. [CrossRef]
Baia, A. , Poppa, J. , Balogha, P. , Gabnaia, Z. , Pályib, B. , Farkasc, I. , Pintérb, G. , and Zsiborácsb, H. , 2016, “ Technical and Economic Effects of Cooling of Monocrystalline Photovoltaic Modules Under Hungarian Conditions,” Renewable Sustainable Energy Rev., 60, pp. 1086–1099. [CrossRef]
Singh, P. , and Ravindra, N. M. , 2012, “ Temperature Dependence of Solar Cell Performance—An Analysis,” Sol. Energy Mater. Sol. Cells, 101, pp. 36–45. [CrossRef]
Evans, D. L. , and Florschuetz, L. W. , 1977, “ Cost Studies on Terrestrial Photovoltaic Power Systems With Sunlight Concentration,” Sol. Energy, 19(3), pp. 255–262. [CrossRef]
Evans, D. L. , 1981, “ Simplified Method for Predicting Photovoltaic Array Output,” Sol. Energy, 27(6), pp. 555–560. [CrossRef]
Chow, T. T. , 2003, “ Performance Analysis of Photovoltaic-Thermal Collector by Explicit Dynamic Model,” Sol. Energy, 75(2), pp. 143–152. [CrossRef]
Liang, R. , Zhang, J. , Ma, L. , and Li, Y. , 2015, “ Performance Evaluation of New Type Hybrid Photovoltaic/Thermal Solar Collector by Experimental Study,” Appl. Therm. Eng., 75(2), pp. 487–492. [CrossRef]
Dupeyrat, P. , Ménézo, C. , and Fortuin, S. , 2014, “ Study of the Thermal and Electrical Performances of PVT Solar Hot Water System,” Energy Build., 68(Pt. C), pp. 751–755. [CrossRef]
Ziapour, B. M. , Palideh, V. , and Mohammadnia, A. , 2014, “ Study of an Improved Integrated Collector-Storage Solar Water Heater Combined With the Photovoltaic Cells,” Energy Convers. Manage., 86, pp. 587–594. [CrossRef]
Fudholi, A. , Sopian, K. , Yazdi, M. H. , Ruslan, M. H. , Ibrahim, A. , and Kazem, H. A. , 2014, “ Performance Analysis of Photovoltaic Thermal (PVT) Water Collectors,” Energy Convers. Manage., 78, pp. 641–651. [CrossRef]
Aste, N. , del Pero, C. , and Leonforte, F. , 2014, “ Water Flat Plate PV–Thermal Collectors: A Review,” Sol. Energy, 102, pp. 98–115. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

(a) Schematics of performance testing for proposed Al-based PV/T and (b) prototype of Al-based PV/T

Grahic Jump Location
Fig. 2

Experimental apparatus for PV/T with locations of the thermoresistors

Grahic Jump Location
Fig. 3

Temperature changes of the PV with different substrates

Grahic Jump Location
Fig. 4

The output power attenuation of PV with different substrates

Grahic Jump Location
Fig. 5

The current (a) and voltage (b) attenuation of PV with different substrates

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In