Research Papers

Determination of Optimum Tilt Angle for Different Photovoltaic Technologies Considering Ambient Conditions: A Case Study for Burdur, Turkey

[+] Author and Article Information
Ramazan Ayaz

Department of Electrical Engineering,
Yildiz Technical University,
Davutpasa Campus,
Istanbul 34220, Turkey
e-mail: ayaz@yildiz.edu.tr

Ali Durusu

Department of Electrical Engineering,
Yildiz Technical University,
Davutpasa Campus,
Istanbul 34220, Turkey
e-mail: adurusu@yildiz.edu.tr

Hakan Akca

Department of Electrical Engineering,
Yildiz Technical University,
Davutpasa Campus,
Istanbul 34220, Turkey
e-mail: hakca@yildiz.edu.tr

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received September 2, 2016; final manuscript received March 21, 2017; published online April 25, 2017. Assoc. Editor: M. Keith Sharp.

J. Sol. Energy Eng 139(4), 041001 (Apr 25, 2017) (6 pages) Paper No: SOL-16-1394; doi: 10.1115/1.4036412 History: Received September 02, 2016; Revised March 21, 2017

This study presents a numerical approach to calculate the optimum photovoltaic (PV) tilt angle by considering the three different PV technologies (monocrystalline, polycrystalline, and thin film). This analysis focuses on determination of optimum tilt angle considering seasonal and yearly solar radiation on a plane (Wh/m2) and seasonal and yearly energy production (Wh) of PVs. The angle at maximum global radiation and maximum energy output is considered as the optimum tilt angle. It is found that optimum tilt angles obtained by total radiation and total energy output are different from each other considering seasonal and yearly base. Total radiation-based tilt angle results show that the optimum tilt angle is 13 deg in spring, 9 deg in summer, 17 deg in autumn, 12 deg in winter, and 12 deg as yearly. Energy production-based optimum tilt angles vary from 5 deg to 13 deg for monocrystalline, from 11 deg to 15 deg for polycrystalline, and from 12 deg to 25 deg for thin film technology according to seasonal and yearly tilt angle results.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Arikan, O. , Isen, E. , Durusu, A. , Kekezoglu, B. , Bozkurt, A. , and Erduman, A. , 2013, “ Introduction to Hybrid Systems—Yildiz Technical University,” Eurocon, Zagreb, Croatia, July 1–4, pp. 1145–1149.
Kekezoglu, B. , Arikan, O. , Erduman, A. , Isen, E. , Durusu, A. , and Bozkurt, A. , 2013, “ Reliability Analysis of Hybrid Energy Systems: Case Study of Davutpasa Campus,” Eurocon, Zagreb, Croatia, July 1–4, pp. 1141–1144.
Yadav, A. K. , and Chandel, S. S. , 2013, “ Tilt Angle Optimization to Maximize Incident Solar Radiation: A Review,” Renewable Sustainable Energy Rev., 23, pp. 503–513. [CrossRef]
Bakirci, K. , 2009, “ Models of Solar Radiation With Hours of Bright Sunshine: A Review,” Renewable Sustainable Energy Rev., 13(9), pp. 2580–2588. [CrossRef]
Chandel, S. S. , and Aggarwal, R. K. , 2011, “ Estimation of Hourly Solar Radiation on Horizontal and Inclined Surfaces in Western Himalayas,” Smart Grid Renewable Energy, 2(1), pp. 45–55. [CrossRef]
Chandel, S. S. , Aggarwal, R. K. , and Pandey, A. N. , 2005, “ New Correlation to Estimate Global Solar Radiation on Horizontal Surfaces Using Sunshine Hour and Temperature Data for Indian Sites,” ASME J. Sol. Energy Eng., 127(3), pp. 417–420. [CrossRef]
El-Sebaii, A. A. , Al-Hazmi, F. S. , Al-Ghamdi, A. A. , and Yaghmour, S. J. , 2010, “ Global, Direct and Diffuse Solar Radiation on Horizontal and Tilted Surfaces in Jeddah, Saudi Arabia,” Appl. Energy, 87(2), pp. 568–576. [CrossRef]
Demain, C. , Journée, M. , and Bertrand, C. , 2013, “ Evaluation of Different Models to Estimate the Global Solar Radiation on Inclined Surfaces,” Renewable Energy, 50, pp. 710–721. [CrossRef]
Benghanem, M. , 2011, “ Optimization of Tilt Angle for Solar Panel: Case Study for Madinah, Saudi Arabia,” Appl. Energy, 88(4), pp. 1427–1433. [CrossRef]
Lewis, G. , 1987, “ Optimum Tilt of a Solar Collector,” Sol. Wind Technol., 4(3), pp. 407–410. [CrossRef]
El-Kassaby, M. M. , 1988, “ Monthly and Daily Optimum Tilt Angle for South Facing Solar Collectors; Theoretical Model, Experimental and Empirical Correlations,” Sol. Wind Technol., 5(6), pp. 589–596. [CrossRef]
El-Kassaby, M. M. , and Hassab, M. H. , 1994, “ Investigation of a Variable Tilt Angle Australian Type Solar Collector,” Renewable Energy, 4(3), pp. 327–332. [CrossRef]
Pierro, M. , Bucci, F. , De Felice, M. , Maggioni, E. , Perotto, A. , Spada, F. , Moser, D. , and Cornaro, C. , 2016, “ Deterministic and Stochastic Approaches for Day-Ahead Solar Power Forecasting,” ASME J. Sol. Energy Eng., 139(2), p. 021010. [CrossRef]
Kern, J. , and Harris, I. , 1975, “ On the Optimum Tilt of a Solar Collector,” Sol. Energy, 17(2), pp. 97–102. [CrossRef]
Chiou, J. P. , and El-Naggar, M. M. , 1986, “ Optimum Slope for Solar Insolation on a Flat Surface Tilted Toward the Equator in Heating Season,” Sol. Energy, 36(5), pp. 471–478. [CrossRef]
Elsayed, M. M. , 1989, “ Optimum Orientation of Absorber Plates,” Sol. Energy, 42(2), pp. 89–102. [CrossRef]
Nijegorodov, N. , Devan, K. R. S. , Jain, P. K. , and Carlsson, S. , 1994, “ Atmospheric Transmittance Models and an Analytical Method to Predict the Optimum Slope of an Absorber Plate, Variously Oriented at any Latitude,” Renewable Energy, 4(5), pp. 529–543. [CrossRef]
Koronakis, P. S. , 1986, “ On the Choice of the Angle of Tilt for South Facing Solar Collectors in the Athens Basin Area,” Sol. Energy, 36(3), pp. 217–225. [CrossRef]
Bari, S. , 2000, “ Optimum Slope Angle and Orientation of Solar Collectors for Different Periods of Possible Utilization,” Energy Convers. Manage., 41(8), pp. 855–860. [CrossRef]
Yakup, M. A. B. H. M. , and Malik, A. Q. , 2001, “ Optimum Tilt Angle and Orientation for Solar Collector in Brunei Darussalam,” Renewable Energy, 24(2), pp. 223–234. [CrossRef]
Bari, S. , 2001, “ Optimum Orientation of Domestic Solar Water Heaters for the Low Latitude Countries,” Energy Convers. Manage., 42(10), pp. 1205–1214. [CrossRef]
Shariah, A. , Al-Akhras, M.-A. , and Al-Omari, I. A. , 2002, “ Optimizing the Tilt Angle of Solar Collectors,” Renewable Energy, 26(4), pp. 587–598. [CrossRef]
Ai, B. , Shen, H. , Ban, Q. , Ji, B. , and Liao, X. , 2003, “ Calculation of the Hourly and Daily Radiation Incident on Three Step Tracking Planes,” Energy Convers. Manage., 44(12), pp. 1999–2011. [CrossRef]
Kacira, M. , Simsek, M. , Babur, Y. , and Demirkol, S. , 2004, “ Determining Optimum Tilt Angles and Orientations of Photovoltaic Panels in Sanliurfa, Turkey,” Renewable Energy, 29(8), pp. 1265–1275. [CrossRef]
Hussein, H. M. S. , Ahmad, G. E. , and El-Ghetany, H. H. , 2004, “ Performance Evaluation of Photovoltaic Modules at Different Tilt Angles and Orientations,” Energy Convers. Manage., 45(15), pp. 2441–2452. [CrossRef]
Elminir, H. K. , Ghitas, A. E. , El-Hussainy, F. , Hamid, R. , Beheary, M. M. , and Abdel-Moneim, K. M. , 2006, “ Optimum Solar Flat-Plate Collector Slope: Case Study for Helwan, Egypt,” Energy Convers. Manage., 47(5), pp. 624–637. [CrossRef]
Skeiker, K. , 2009, “ Optimum Tilt Angle and Orientation for Solar Collectors in Syria,” Energy Convers. Manage., 50(9), pp. 2439–2448. [CrossRef]
Durusu, A. , Erduman, A. , Tanrioven, M. , and Gawlik, W. , “ Comparative Study of PV Array Optimum Tilt and Azimuth Angles With Multi-Objective Consideration,” Turk. J. Electr. Eng. Comput. Sci. (in press).
Tamizhmani, G. , Ji, L. , Tang, Y. , Petacci, L. , and Osterwald, C. , 2003, “ Photovoltaic Module Thermal/Wind Performance: Long-Term Monitoring and Model Development for Energy Rating,” NCPV and Solar Program Review Meeting, Denver, CO, Mar. 24–26, pp. 936–939.
Bora, B. , Sastry, O. S. , Kumar, A. , Bangar, R. M. , and Prasad, B. , 2016, “ Estimation of Most Frequent Conditions and Performance Evaluation of Three Photovoltaic Technology Modules,” ASME J. Sol. Energy Eng., 138(5), p. 054504. [CrossRef]
Ogaili, H. , and David, J. S. , 2016, “ Measuring the Effect of Vegetated Roofs on the Performance of Photovoltaic Panels in a Combined System,” ASME J. Sol. Energy Eng., 138(6), p. 061009. [CrossRef]
Carr, A. J. , and Pryor, T. L. , 2004, “ A Comparison of the Performance of Different PV Module Types in Temperate Climates,” Sol. Energy, 76(1–3), pp. 285–294. [CrossRef]
Duffie, W. A. , and Beckman, J. A. , 1980, Solar Engineering of Thermal Processes, 3rd ed., Wiley, Hoboken, NJ.
Ayaz, R. , Nakir, I. , and Tanrioven, M. , 2014, “ An Improved Matlab-Simulink Model of PV Module Considering Ambient Conditions,” Int. J. Photoenergy, 2014, pp. 1–6. [CrossRef]
Vance, W. , Gustafson, M. , Huang, H. , and Menart, J. , 2016, “ Computational Study of a Fixed Orientation Photovoltaic Compound Parabolic Concentrator,” ASME J. Sol. Energy Eng., 139(2), p. 021002. [CrossRef]
Kalogirou, S. , 2009, Solar Energy Engineering: Processes and Systems, 2nd ed., Academic Press, San Diego, CA.
Salas, V. , Olias, E. , Barrado, A. , and Lazaro, A. , 2006, “ Review of the Maximum Power Point Tracking Algorithms for Stand-Alone Photovoltaic Systems,” Sol. Energy Mater. Sol. Cells, 90(11), pp. 1555–1578. [CrossRef]
Durusu, A. , Nakir, I. , and Tanrioven, M. , 2014, “ Matlab/Stateflow Based Modeling of MPPT Algorithms,” Int. J. Adv. Electron. Electr. Eng., 3(3), pp. 117–120.


Grahic Jump Location
Fig. 1

The block diagram of the methodology

Grahic Jump Location
Fig. 2

Measurement setup for global radiation on horizontal and tilted surfaces

Grahic Jump Location
Fig. 3

Comparison of calculated and measured radiations on tilted surface

Grahic Jump Location
Fig. 4

Simplified equivalent circuit model

Grahic Jump Location
Fig. 5

matlab/simulink block diagram of PV panel

Grahic Jump Location
Fig. 6

The radiation, ambient temperature, and wind speed values for Burdur

Grahic Jump Location
Fig. 7

Total radiation on a square meter area for different tilted surfaces

Grahic Jump Location
Fig. 8

The annual total radiation on a tilted surface

Grahic Jump Location
Fig. 9

Seasonal energy production of PV technologies

Grahic Jump Location
Fig. 10

Annual energy production of PV technologies




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In