0
Research Papers

A Three-Dimensional Comprehensive Numerical Investigation of Different Operating Parameters on the Performance of a Photovoltaic Thermal System With Pancake Collector

[+] Author and Article Information
Afroza Nahar

UM Power Energy Dedicated Advanced
Centre (UMPEDAC),
Level 4, Wisma R&D,
University of Malaya,
Kuala Lumpur 59990, Malaysia;
Institute of Graduate Studies,
University of Malaya,
Kuala Lumpur 50603, Malaysia
e-mail: afroza@siswa.um.edu.my

M. Hasanuzzaman

UM Power Energy Dedicated Advanced
Centre (UMPEDAC),
Level 4, Wisma R&D,
University of Malaya,
Kuala Lumpur 59990, Malaysia
e-mail: hasan@um.edu.my

N. A. Rahim

UM Power Energy Dedicated Advanced
Centre (UMPEDAC),
Level 4, Wisma R&D,
University of Malaya,
Kuala Lumpur 59990, Malaysia;
Renewable Energy Research Group,
King Abdulaziz University,
Jeddah 21589, Saudi Arabia
e-mail: nasrudin@um.edu.my

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received May 25, 2016; final manuscript received December 9, 2016; published online March 16, 2017. Assoc. Editor: Carlos F. M. Coimbra.

J. Sol. Energy Eng 139(3), 031009 (Mar 16, 2017) (16 pages) Paper No: SOL-16-1239; doi: 10.1115/1.4035818 History: Received May 25, 2016; Revised December 09, 2016

Performance of photovoltaic (PV) module decreases significantly with increasing cell temperature due to its overheating. Photovoltaic thermal (PVT) is an optimized technology that facilitates effective removal and utilization of this excess heat leading to enhanced electrical performance. In this article, a 3D numerical model has been developed and analyzed to investigate the PVT performance with a new pancake-shaped flow channel design. This flow channel is attached directly to the backside of PV module by using thermal paste. The governing equations are solved numerically by using Galerkin's weighted residual finite-element method (FEM), which has been developed using COMSOL Multiphysics® software. The numerical results show that the cell temperature reduces on an average 42 °C, and the electrical efficiency and output power increase by 2% and 20 W, respectively, for both aluminum and copper channels with an increase in inlet velocity from 0.0009 to 0.05 m/s. On the other hand, overall efficiency of the PVT system drops about 13% in both cases as the inlet temperature increases from 20 °C to 40 °C. Cell temperature is found to increase approximately by 5.4 °C and 9.2 °C for every 100 W/m2 increase in irradiation level of the PV module with and without cooling system, respectively. Regarding flow channel material, it has been observed that use of either copper or aluminum produces almost similar performance of the PVT module.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hasanuzzaman, M. , Al-Amin, A. Q. , Khanam, S. , and Hosenuzzaman, M. , 2015, “ Photovoltaic Power Generation and Its Economic and Environmental Future in Bangladesh,” J. Renewable Sustainable Energy, 7(1), pp. 1–12. [CrossRef]
Hosenuzzaman, M. , Rahim, N. A. , Selvaraj, J. , Hasanuzzaman, M. , Malek, A. B. M. A. , and Nahar, A. , 2015, “ Global Prospects, Progress, Policies, and Environmental Impact of Solar Photovoltaic Power Generation,” Renewable Sustainable Energy Rev., 41, pp. 284–297. [CrossRef]
Teo, H. G. , Lee, P. S. , and Hawlader, M. N. A. , 2012, “ An Active Cooling System for Photovoltaic Modules,” Appl. Energy, 90(1), pp. 309–315. [CrossRef]
Riffat, S. B. , Zhao, X. , and Doherty, P. S. , 2005, “ Developing a Theoretical Model to Investigate Thermal Performance of a Thin Membrane Heat-Pipe Solar Collector,” Appl. Therm. Eng., 25(5–6), pp. 899–915. [CrossRef]
Ibrahim, A. , Othman, M. Y. , Ruslan, M. H. , Sohif, M. , and Kamaruzzaman, S. , 2011, “ Recent Advances in Flat Plate Photovoltaic/Thermal (PV/T) Solar Collectors,” Renewable Sustainable Energy Rev., 15(1), pp. 352–365. [CrossRef]
Charalambous, P. G. , Maidment, G. G. , Kalogirou, S. A. , and Yiakoumetti, K. , 2007, “ Photovoltaic Thermal (PV/T) Collectors: A Review,” Appl. Therm. Eng., 27(2–3), pp. 275–286. [CrossRef]
Zondag, H. A. , 2008, “ Flat-Plate PV-Thermal Collectors and Systems: A Review,” Renewable Sustainable Energy Rev., 12(4), pp. 891–959. [CrossRef]
Chow, T. T. , 2010, “ A Review on Photovoltaic/Thermal Hybrid Solar Technology,” Appl. Energy, 87(2), pp. 365–379. [CrossRef]
Hasan, M. A. , and Shumathy, K. , 2010, “ Photovoltaic Thermal Module Concepts and Their Performance Analysis: A Review,” Renewable Sustainable Energy Rev., 14(7), pp. 1845–1859. [CrossRef]
Tyagi, V. V. , Kaushik, S. C. , and Tyagi, S. K. , 2012, “ Advancement in Solar Photovoltaic/Thermal (PV/T) Hybrid Collector Technology,” Renewable Sustainable Energy Rev., 16(3), pp. 1383–1398. [CrossRef]
Hegazy, A. A. , 2000, “ Comparative Study of the Performances of Four Photovoltaic/Thermal Solar Air Collectors,” Energy Convers. Manage., 41(8), pp. 861–881. [CrossRef]
Tiwari, G. N. , Mishra, R. K. , and Solanki, S. C. , 2011, “ Photovoltaic Modules and Their Applications: A Review on Thermal Modeling,” Appl. Energy, 88(7), pp. 2287–2304. [CrossRef]
Othman, M. Y. , Ibrahim, A. , Goh, L. J. , Ruslan, M. H. , and Kamaruzzaman, S. , 2013, “ Photovoltaic-Thermal (PV/T) Technology: The Future Energy Technology,” Renewable Energy, 49, pp. 171–174. [CrossRef]
Eck, M. , Uhlig, R. , Mertins, M. , Haberle, A. , and Lerchenmuller, H. , 2007, “ Thermal Load of Direct Steam-Generating Absorber Tubes With Large Diameter in Horizontal Linear Fresnel Collectors,” Heat Transfer Eng., 28(1), pp. 42–48. [CrossRef]
Eck, M. , Jan, F. F. , and Uhlig, R. , 2010, “ Thermal Modeling and Simulation of Parabolic Trough Receiver Tubes,” ASME Paper No. ES2010-90402.
Koech, R. K. , Ondieki, H. O. , Tonui, J. K. , and Rotich, S. K. , 2012, “ A Steady State Thermal Model for Photovoltaic/Thermal (PV/T) System Under Various Conditions,” Int. J. Sci. Technol. Res., 1(11), pp. 1–5.
Kumar, A. , and Prasad, B. N. , 2000, “ Investigation of Twisted Tape Inserted Solar Water Heaters—Heat Transfer, Friction Factor and Thermal Performance Results,” Renewable Energy, 19(3), pp. 379–398. [CrossRef]
Fan, J. , Shah, L. J. , and Furbo, S. , 2007, “ Flow Distribution in a Solar Collector Panel With Horizontally Inclined Absorber Strips,” Sol. Energy, 81(12), pp. 1501–1511. [CrossRef]
Chow, T. T. , He, W. , and Ji, J. , 2007, “ An Experimental Study of Façade-Integrated Photovoltaic/Water-Heating System,” Appl. Therm. Eng., 27(1), pp. 37–45. [CrossRef]
Cadafalch, J. , 2009, “ A Detailed Numerical Model for Flat-Plate Solar Thermal Devices,” Sol. Energy, 83(12), pp. 2157–2164. [CrossRef]
Duffie, J. A. , and Beckman, W. A. , 2013, Solar Engineering of Thermal Processes, 4th ed., Wiley, Hoboken, NJ.
Dubey, S. , Sandhu, G. S. , and Tiwari, G. N. , 2009, “ Analytical Expression for Electrical Efficiency of PV/T Hybrid Air Collector,” Appl. Energy, 86(5), pp. 697–705. [CrossRef]
Sandnes, B. , and Rekstad, J. , 2002, “ A Photovoltaic/Thermal (PV/T) Collector With a Polymer Absorber Plate: Experimental Study and Analytical Model,” Sol. Energy, 72(1), pp. 63–73. [CrossRef]
Jones, A. D. , and Underwood, C. P. , 2001, “ A Thermal Model for Photovoltaic Systems,” Sol. Energy, 70(4), pp. 349–359. [CrossRef]
Bergene, T. , and Løvvik, O. , 1995, “ Model Calculations on a Flat-Plate Solar Heat Collector With Integrated Solar Cells,” Sol. Energy, 55(6), pp. 453–462. [CrossRef]
Garg, H. P. , and Agarwal, R. K. , 1995, “ Some Aspects of a PV/T Collector/Forced Circulation Flat-Plat Solar Water Heater With Solar Cells,” Energy Convers. Manage., 36(2), pp. 87–99. [CrossRef]
Garg, H. P. , and Adhikari, R. S. , 1997, “ Conventional Hybrid Photovoltaic/Thermal (PV/T) Air Heating Collectors: Steady-State Simulation,” Renewable Energy, 11(3), pp. 363–385. [CrossRef]
Chandrasekar, M. , Suresh, S. , Senthilkumar, T. , and Karthikeyan, M. G. , 2013, “ Passive Cooling of Standalone Flat PV Module With Cotton Wick Structures,” Energy Convers. Manage., 71, pp. 43–50. [CrossRef]
Zondag, H. A. , de Vries, D. W. , van Helden, W. G. J. , van Zolingen, R. J. C. , and van Steenhoven, A. A. , 2002, “ The Thermal and Electrical Yield of a PV-Thermal Collector,” Sol. Energy, 72(2), pp. 113–128. [CrossRef]
Karanth, K. V. , Manjunath, M. S. , and Sharma, N. Y. , 2011, “ Numerical Simulation of a Solar Flat Plate Collector Using Discrete Transfer Radiation Model (DTRM),” A CFD Approach in Proceedings of the World Congress on Engineering, London, July 6–8.
Rehena, N. , Parvin, S. , and Alim, M. A. , 2014, “ Effect of Prandtl Number on 3D Heat Transfer Through a Solar Collector,” International Conference on Mechanical, Industrial and Energy Engineering, Khulna, Bangladesh.
Siddiqui, U. M. , Arif, A. F. M. , Kelley, L. , and Dubowsky, S. , 2012, “ Three-Dimensional Thermal Modeling of a Photovoltaic Module Under Varying Conditions,” Sol. Energy, 86(9), pp. 2620–2631. [CrossRef]
COMSOL, 2015, www.comsol.com
Tiwari, A. , Sodha, M. S. , Chandra, A. , and Joshi, J. C. , 2012, “ Performance Evaluation of Photovoltaic Thermal Solar Air Collector for Composite Climate of India,” Sol. Energy Mater. Sol. Cells, 90(2), pp. 175–189. [CrossRef]
Dubey, S. , and Andrew, A. O. T. , 2013, “ Testing of Two Different Types of Photovoltaic–Thermal (PVT) Modules With Heat Flow Pattern Under Tropical Climatic Conditions,” Energy Sustainable Dev., 17(1), pp. 1–12. [CrossRef]
McAdams, W. H. , 1954, Heat Transmission, 3rd ed., McGraw Hill, New York.
Dubey, S. , and Tiwari, G. N. , 2008, “ Thermal Modeling of a Combined System of Photovoltaic Thermal (PV/T) Solar Water Heater,” Sol. Energy, 82(7), pp. 602–612. [CrossRef]
Evans, D. L. , 1981, “ Simplified Method for Predicting PV Array Output,” Sol. Energy, 27(6), pp. 555–560. [CrossRef]
Joshi, A. S. , Tiwari, A. , Tiwari, G. N. , Dincer, I. , and Reddy, B. V. , 2009, “ Performance Evaluation of a Hybrid Photovoltaic Thermal (PV/T) (Glass-to-Glass) System,” Int. J. Therm. Sci., 48(1), pp. 154–164. [CrossRef]
Fontenault, B. J. , and Gutierrez-Miravete, E. , 2002, “ Modeling a Combined Photovoltaic-Thermal Solar Panel,” COMSOL Conference, Boston, MA, Oct. 3–5.
Cattani, L. , 2012, “ Numerical Investigation of the Convective Heat Transfer Enhancement in Coiled Tubes,” COMSOL Conference, Milan, Italy, Oct. 10–12.
Seyyedvalilu, M. H. , and Ranjbar, S. F. , 2015, “ The Effect of Geometrical Parameters on Heat Transfer and Hydro Dynamical Characteristics of Helical Exchanger,” Int. J. Recent Adv. Mech. Eng., 4(1), pp. 35–46. [CrossRef]
Salem, M. R. , Elshazly, K. M. , Sakr, R. Y. , and Ali, R. K. , 2015, “ Experimental Investigation of Coil Curvature Effect on Heat Transfer and Pressure Drop Characteristics of Shell and Coil Heat Exchanger,” ASME J. Therm. Sci. Eng. Appl., 7(1), p. 011005. [CrossRef]
Tiwari, A. , and Sodha, M. S. , 2006, “ Performance Evaluation of Hybrid PV/Thermal Water/Air Heating System: A Parametric Study,” Renewable Energy, 31(15), pp. 2460–2474. [CrossRef]
Sarhaddi, F. , Farahat, S. , Ajam, H. , Behzadmehr, A. , and Adeli, M. M. , 2010, “ An Improved Thermal and Electrical Model for a Solar Photovoltaic Thermal (PV/T) Air Collector,” Appl. Energy, 87(7), pp. 2328–2339. [CrossRef]
Radziemska, E. , 2003, “ The Effect of Temperature on the Power Drop in Crystalline Silicon Solar Cells,” Renewable Energy, 28(1), pp. 1–12. [CrossRef]
Dubey, S. , Jatin, N. S. , and Bharath, S. , 2013, “ Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World: A Review,” Energy Procedia, 33, pp. 311–321. [CrossRef]
Rahman, M. M. , Hasanuzaman, M. , and Rahim, N. A. , 2015, “ Effects of Various Parameters on PV-Module Power and Efficiency,” Energy Convers. Manage., 103, pp. 348–358. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Geometry of PVT collector: (a) front view of the PV panel, (b) 3D view of PVT collector, (c) pancake flow channel, (d) backside view of the PVT collector, and (e) cross-sectional view of the PVT collector

Grahic Jump Location
Fig. 2

PVT collector meshed in COMSOL Multiphysics® using the physics-controlled mesh sequence

Grahic Jump Location
Fig. 3

Model validation of PVT model with experimental data

Grahic Jump Location
Fig. 4

Attainment of steady-state conditions in the simulation study

Grahic Jump Location
Fig. 5

Effect of inlet velocity on temperature distribution throughout the pancake flow channel (for Al with R = 1000 W/m2, Tamb = 27 °C, and Tin = 27 °C): (a) inlet velocity, Uo = 0.0009 m/s, (b) inlet velocity, Uo = 0.002 m/s, (c) inlet velocity, Uo = 0.005 m/s, (d) inlet velocity, Uo = 0.009 m/s, (e) inlet velocity, Uo = 0.02 m/s, and (f) inlet velocity, Uo = 0.05 m/s

Grahic Jump Location
Fig. 6

Effect of inlet temperature on temperature distribution throughout the pancake flow channel (for Al with R = 1000 W/m2 and Uo = 0.005 m/s): (a) inlet temperature, Tin = 20 °C, (b) inlet temperature, Tin = 25 °C, (c) inlet temperature, Tin = 30 °C, (d) inlet temperature, Tin = 35 °C, and (e) inlet temperature, Tin = 40 °C

Grahic Jump Location
Fig. 7

Effect of inlet velocity on temperature distribution throughout panel (for Al flow channel with R = 1000 W/m2, Tamb = 27 °C, and Tin = 27 °C): (a) inlet velocity, Uo = 0.0009 m/s, (b) inlet velocity, Uo = 0.002 m/s, (c) inlet velocity, Uo = 0.005 m/s, (d) inlet velocity, Uo = 0.009 m/s, (e) inlet velocity, Uo = 0.02 m/s, and (f) inlet velocity, Uo = 0.05 m/s

Grahic Jump Location
Fig. 8

The effect of inlet velocity on (a) cell temperature and (b) water outlet temperature of the PV module for both Al and Cu flow channels (Tamb = 27 °C, Tin = 27 °C, and R = 1000 W/m2)

Grahic Jump Location
Fig. 9

Effect of inlet velocity on the performance of PV panel for both Al and Cu flow channels (Tamb = 27 °C, Tin = 27 °C, and R = 1000 W/m2)

Grahic Jump Location
Fig. 10

Effect of inlet temperature on PVT panel performance for both Al and Cu flow channels (Tamb = 27 °C, Uo = 0.005 m/s, and R = 1000 W/m2)

Grahic Jump Location
Fig. 11

Effect of cell temperature (a) and output power (b) on electrical efficiency for both Al and Cu flow channels under the cooling system (Tin = 27 °C, Tamb = 27 °C, and R = 1000 W/m2)

Grahic Jump Location
Fig. 12

Effect of ambient temperature on the performance of PV panel for both Al and Cu flow channels (Tin = 27 °C, Uo = 0.005 m/s, and R = 1000 W/m2)

Grahic Jump Location
Fig. 13

PV performance variation with absorbed radiation for both Al and Cu flow channels (Tamb = 27 °C, Uo = 0.005 m/s, and Tin = 27 °C)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In