0
Research Papers

Phase Change Material For Solar Thermal Energy Storage In Buildings: Numerical Study

[+] Author and Article Information
Zineb Bouhssine

Laboratory of Physical Materials,
Microelectronics, Automatics and
Heat Transfer (LPMMAT),
Faculty of Sciences,
Hassan II University of Casablanca-Morocco,
Casablanca 20600, Morocco
e-mail: zineb.bouh@gmail.com

Mostafa Najam

Laboratory of Physical Materials,
Microelectronics, Automatics and
Heat Transfer (LPMMAT),
Faculty of Sciences,
Hassan II University of Casablanca-Morocco,
Casablanca 20600, Morocco
e-mail: mnejam@yahoo.fr

Mustapha El Alami

Laboratory of Physical Materials,
Microelectronics, Automatics and
Heat Transfer (LPMMAT),
Faculty of Sciences,
Hassan II University of Casablanca-Morocco,
Casablanca 20600, Morocco
e-mails: m.elalami@fsac.ac.ma;
elalamimus@gmail.com

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received April 26, 2016; final manuscript received August 9, 2016; published online September 15, 2016. Assoc. Editor: Jorge E. Gonzalez.

J. Sol. Energy Eng 138(6), 061006 (Sep 15, 2016) (8 pages) Paper No: SOL-16-1192; doi: 10.1115/1.4034518 History: Received April 26, 2016; Revised August 09, 2016

Thermal storage plays a major role in a wide variety of industrial, commercial, and residential applications when there is a mismatch between the offer and the claim of energy. In this paper, we study numerically the contribution of phase change materials (PCMs) for solar thermal energy storage (TES) in buildings. The studied configuration is a plane solar collector incorporating a PCM layer and coupled to a concrete slab (a roof of a building). The study is conducted for Casablanca (Morocco) meteorological conditions. Several simulations were performed to optimize the melting temperature and the PCM layer thickness. The results show that PCM imposes, on the roof, a temperature close to its melting temperature. The choice of a melting temperature Tmelt = 22 °C (the local indoor temperature Tc is fixed as Tc = 22 °C) limits the losses through the concrete slab, considerably. This last seems to be, nearly, adiabatic, in this case. Also, the energy released by PCM solidification, overnight, increases the outlet temperature of the coolant fluid to 35 °C and the useful flux to 80 W/m2, increasing the efficiency of the solar collector by night. The PCM functioned both as an energy storage material for the stabilization of the coolant fluid temperature and as an insulating material for the building.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Castell, A. , Martorell, I. , Medrano, M. , Pérez, G. , and Cabeza, L. F. , 2010, “ Experimental Study of Using PCM in Brick Constructive Solutions for Passive Cooling,” Energy Build., 42(4), pp. 534–540. [CrossRef]
Cabeza, L. F. , Castell, A. , Barreneche, C. , de Garcia, A. , and Fernandez, A. I. , 2011, “ Materials Used as PCM in Thermal Energy Storage in Buildings: A Review,” Renewable Sustainable Energy Rev., 15(3), pp. 1675–1695. [CrossRef]
Yahay, N. A. , and Ahmad, H. , 2011, “ Numerical Investigation of Indoor Air Temperature With the Application of PCM Gypsum Board as Ceiling Panels in Buildings,” Procedia Eng., 20, pp. 238–248. [CrossRef]
Zwanzig, S. D. , Lian, Y. , and Brehob, E. G. , 2013, “ Numerical Simulation of Phase Change Material Composite Wallboard in a Multi-Layered Building Envelope,” Energy Convers. Manage., 69, pp. 27–40. [CrossRef]
Arce, P. , Castellón, C. , Castell, A. , and Cabeza, L. F. , 2012, “ Use of Microencapsulated PCM in Buildings and the Effect of Adding Awnings,” Energy Build., 44, pp. 88–93. [CrossRef]
Kurklu, A. , Ozmerzi, A. , and Bilgin, S. , 2002, “ Thermal Performance of a Water-Phase Change Material Solar Collector,” Renewable Energy, 26(3), pp. 391–399. [CrossRef]
Mettawee, E. B. S. , and Assassa, G. M. R. , 2006, “ Experimental Study of a Compact PCM Solar Collector,” Energy, 31(14), pp. 2958–2968. [CrossRef]
Qarnia, H. E. , 2009, “ Numerical Analysis of a Coupled Solar Collector Latent Heat Storage Unit Using Various Phase Change Materials for Heating the Water,” Energy Convers. Manage., 50(2), pp. 247–254. [CrossRef]
Padovan, R. , and Manzan, M. , 2014, “ Genetic Optimization of a PCM Enhanced Storage Tank for Solar Domestic Hot Water Systems,” Sol. Energy, 103, pp. 563–573. [CrossRef]
Mahfuz, M. H. , Anisur, M. R. , Kibria, M. A. , Saidur, R. , and Metselaar, I. H. S. C. , 2014, “ Performance Investigation of Thermal Energy Storage System With Phase Change Material (PCM) for Solar Water Heating Application,” Int. Commun. Heat Mass Transfer, 57, pp. 132–139. [CrossRef]
Alva, L. H. , González, J. E. , and Dukham, N. , 2006, “ Initial Analysis of PCM Integrated Solar Collectors,” ASME J. Sol. Energy Eng., 128(2), pp. 173–177. [CrossRef]
Buker, M. S. , and Riffat, S. B. , 2015, “ Building Integrated Solar Thermal Collectors—A Review,” Renewable Sustainable Energy Rev., 51, pp. 327–346. [CrossRef]
Lamnatou, Chr. , Mondol, J. D. , Chemisana, D. , and Maurer, C. , 2015, “ Modelling and Simulation of Building Integrated Solar Thermal Systems: Behaviour of the Coupled Building/System Configuration,” Renewable Sustainable Energy Rev., 48, pp. 178–191. [CrossRef]
Maurer, C. , Cappel, C. , and Kuhn, T. E. , 2015, “ Simple Models for Building Integrated Solar Thermal Systems,” Energy Build., 103, pp. 118–123. [CrossRef]
Zhou, Z. , Zhang, Z. , Zuo, J. , Huang, K. , and Zhang, L. , 2015, “ Phase Change Materials for Solar Thermal Energy Storage in Residential Buildings in Cold Climate,” Renewable Sustainable Energy Rev., 48, pp. 692–703. [CrossRef]
Heier, J. , Bales, C. , and Martin, V. , 2015, “ Combining Thermal Energy Storage With Buildings—A Review,” Renewable Sustainable Energy Rev., 42, pp. 1305–1325. [CrossRef]
Ismail, K. A. R. , Quispe, O. C. , and Henriquez, J. R. , 1999, “ A Numerical and Experimental Study on a Parallel Plate Ice Bank,” Appl. Therm. Eng., 19(2), pp. 163–193. [CrossRef]
Ismail, K. A. R. , Castro, J. N. , and Lino, F. A. M. , 2015, “ Thermal Insulation of Walls and Roofs by PCM: Modeling and Experimental Validation,” Int. J. Eng. Appl. Sci., 2(9), pp. 83–93.
Ismail, K. A. R. , and Castro, J. N. , 1997, “ PCM Thermal Insulation in Buildings,” Int. J. Energy Res., 21(14), pp. 1281–1296. [CrossRef]
Ismail, K. A. R. , and Henriquez, J. R. , 1997, “ PCM Glazing System,” Int. J. Energy Res., 21(13), pp. 1241–1255. [CrossRef]
Chassériaux, J. M. , 1984, Conversion Thermique du Rayonnement Solaire, Edition Dunod, France, p. 272.
Tadili, R. , and Bargach, M. N. , 2005, “ Une methode d'estimation du rayonnement solaire global reçu par une surface inclinée,” La Météorologie, 50, pp. 46–50. [CrossRef]
Hakem, S. A. , Kasbadji-Merzouk, N. , and Merzouk, M. , 2008, “ Performances journalières d'un chauffe-eau solaire,” Revue des Energies Renouvelables CICME’08, pp. 153–162.
Voller, V. R. , Cross, M. , and Markatos, N. C. , 1987, “ An Enthalpy Method for Convection/Diffusion Phase Change,” Int. J. Numer. Methods Eng., 24(1), pp. 271–284. [CrossRef]
Maroc Météo, 2011, “  Le Modèle ALBACHIR,” Maroc Météo, Casablanca, Morocco.
Pailleux, J. , Geleyn, J.-F. , and Legrand, G. E. , 2000, “ La prévision numérique du temps avec les modèles ARPEGE et ALADIN,” La Météorologie 8e série, 30, pp. 32–60. [CrossRef]
Patankar, S. V. , 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC.
Bouhssine, Z. , Faraji, M. , Najam, M. , and El Alami, M. , 2015, “ Numerical Investigations of the Heating of Building Integrated Phase Change Material Coupled Solar Collector,” Fluids Dyn. Mater. Process., 11, pp. 63–85.
Alexiades, V. , and Solomon, A. D. , 1993, Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publishing Corporation, Washington, DC, p. 305.
Bouzlou, Y. , Mourid, A. , El Alami, M. , Najam, M. , and Faraji, M. , 2015, “ Stockage d’énergie d'origine solaire dans un MCP inséré sur le toit d'un local soumis aux conditions météorologiques de Casablanca,” Congrès Français de Thermique, SFT'2015, La Rochelle, France, Mai 26–29.

Figures

Grahic Jump Location
Fig. 1

Studied configuration

Grahic Jump Location
Fig. 2

Climatic conditions of Casablanca, January 2013

Grahic Jump Location
Fig. 3

Variation of the melting front position as a function of time

Grahic Jump Location
Fig. 4

Indoor temperature variation with time

Grahic Jump Location
Fig. 5

Variation of Tin with time for different values of Tmelt

Grahic Jump Location
Fig. 6

Variation of the liquid fraction with time for different values of Tmelt

Grahic Jump Location
Fig. 7

Variation of Tfo as a function of the PCM melting temperature

Grahic Jump Location
Fig. 8

Variation of the useful flux as a function of the PCM melting temperature

Grahic Jump Location
Fig. 9

Variation of Tin with time for different values of the thickness of the PCM, Tmelt = 22 °C

Grahic Jump Location
Fig. 10

Variation of the liquid fraction with time for different values of the thickness of the PCM, Tmelt = 22 °C

Grahic Jump Location
Fig. 11

Variation of the outlet temperature of the fluid as a function of the thickness of the PCM, Tmelt = 22 °C

Grahic Jump Location
Fig. 12

Variation of the useful flux as a function of the thickness of the PCM, Tmelt = 22 °C

Grahic Jump Location
Fig. 13

(a) Variation of the internal temperature and the liquid fraction as a function of time. (b) Variation of the efficiency of the solar collector as a function of time.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In