0
Research Papers

Natural Dye Extracted From Saraca asoca Flowers as Sensitizer for TiO2-Based Dye-Sensitized Solar Cell

[+] Author and Article Information
Ishwar Chandra Maurya, Neetu, Arun Kumar Gupta, Lal Bahadur

Department of Chemistry,
Institute of Science,
Banaras Hindu University,
Varanasi 221005, India

Pankaj Srivastava

Department of Chemistry,
Institute of Science,
Banaras Hindu University,
Varanasi 221005, India
e-mail: pankaj_bhuin@rediffmail.com

1Corresponding author.

Manuscript received March 28, 2016; final manuscript received May 28, 2016; published online July 25, 2016. Assoc. Editor: Wojciech Lipinski.

J. Sol. Energy Eng 138(5), 051006 (Jul 25, 2016) (6 pages) Paper No: SOL-16-1143; doi: 10.1115/1.4034028 History: Received March 28, 2016; Revised May 28, 2016

In this work, we have chosen the low cost natural dye extracted from Saraca asoca flowers to act as a sensitizer dye for TiO2-based dye-sensitized solar cell (DSSC). UV–visible spectroscopic studies of ethanolic extract of dyes have been done in order to understand light absorption behavior of dye. The natural dye extract covers appreciable spectrum of solar radiation, 400–500 nm with an absorption maximum at 450 nm that makes it suitable for use as a photosensitizer in DSSC application. The dye adsorbed onto the semiconductor facilitates electron transfer across the dye/semiconductor interface. FTIR spectra of extract revealed the presence of anchoring groups and coloring constituents. DSSC fabricated with TiO2 and natural dye extract obtained from Saraca asoca flowers as sensitizer has shown open-circuit voltage (Voc) 516 mV, short-circuit current density (Jsc) 0.29 mA/cm2, fill factor (FF) 0.65, incident photon-to-current conversion efficiency (IPCE) 43%, and conversion efficiency of 0.09%. This work briefly discusses the simple extraction technique of natural dye and its performance in DSSC.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Argazzi, R. , Iha, N. Y. M. , Zabri, H. , Odobel, F. , and Bignozzi, C. A. , 2004, “ Design of Molecular Dyes for Application in Photoelectrochemical and Electrochromic Devices Based on Nanocrystalline Metal Oxide Semiconductors,” Coord. Chem. Rev., 248, pp. 1299–1316. [CrossRef]
Wongcharee, K. , Meeyoo, V. , and Chavadej, S. , 2007, “ Dye-Sensitized Solar Cell Using Natural Dyes Extracted From Rosella and Blue Pea Flowers,” Sol. Energy Mater. Sol. Cells, 91(7), pp. 566–571. [CrossRef]
O'Regan, B. , and Grätzel, M. , 1991, “ A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature, 353(6346), pp. 737–740. [CrossRef]
Kyaw, A. K. K. , Sun, X. W. , Zhao, J. L. , Wang, J. X. , Zhao, D. W. , Wei, X. F. , Liu, X. W. , Demir, H. V. , and Wu, T. , 2011, “ Top-Illuminated Dye-Sensitized Solar Cells With a Room-Temperature-Processed ZnO Photoanode on Metal Substrates and a Pt-Coated Ga-Doped ZnO Counter Electrode,” J. Phys. D: Appl. Phys., 44(4), p. 045102. [CrossRef]
Neil, R. , 2006, “ Optimizing Dyes for Dye‐Sensitized Solar Cells,” Angew. Chem., Int. Ed., 45, pp. 2338–2345. [CrossRef]
Calogero, G. , Marco, G. D. , Caramori, S. , Cazzanti, S. , Argazzi, R. , and Bignozzi, C. A. , 2009, “ Natural Dye Sensitizers for Photoelectrochemical Cells,” Energy Environ. Sci., 2(11), pp. 1162–1172. [CrossRef]
Nazeeruddin, M. K. , Kay, A. , Rodicio, I. , Humphry-Baker, R. , Müller, E. , Liska, P. , Vlachopoulos, N. , and Grätzel, M. , 1993, “ Conversion of Light to Electricity by cis-X2Bis(2,2′-Bipyridyl-4,4′-Dicarboxylate)Ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes,” J. Am. Chem. Soc., 115(14), pp. 6382–6390. [CrossRef]
Frédéric, S. , Fischer, M. K. , Mishra, A. , Zakeeruddin, S. M. , Nazeeruddin, M. K. , Bäuerle, P. , and Grätzel, M. , 2009, “ A Dendritic Oligothiophene Ruthenium Sensitizer for Stable Dye‐Sensitized Solar Cells,” ChemSusChem, 2, pp. 761–768. [CrossRef] [PubMed]
Amao, Y. , and Komori, T. , 2004, “ Bio-Photovoltaic Conversion Device Using Chlorine-e6 Derived From Chlorophyll From Spirulina Adsorbed on a Nanocrystalline TiO2 Film Electrode,” Biosens. Bioelectron., 19(8), pp. 843–847. [CrossRef] [PubMed]
Ying, L. , Ku, S. , Chen, S. , Ali, M. A. , and AlHemaid, F. M. A. , 2013, “ Photoelectrochemistry for Red Cabbage Extract as Natural Dye to Develop a Dye-Sensitized Solar Cells,” Int. J. Electrochem. Sci., 8(1), pp. 1237–1245.
Shanmugam, V. , Manoharan, S. , Anandan, S. , and Murugan, R. , 2013, “ Performance of Dye-Sensitized Solar Cells Fabricated With Extracts From Fruits of Ivy Gourd and Flowers of Red Frangipani as Sensitizers,” Spectrochim. Acta, Part A, 104(3), pp. 35–40. [CrossRef]
Chang, H. , Wu, H. M. , Chen, T. L. , Huang, K. D. , Jwo, C. S. , and Lo., Y. J. , 2010, “ Dye-Sensitized Solar Cell Using Natural Dyes Extracted From Spinach and Ipomoea,” J. Alloys Compd., 495(2), pp. 606–610. [CrossRef]
Gómez-Ortíz, N. M. , Vázquez-Maldonado, I . A. , Pérez-Espadas, A. R. , Mena-Rejón, G. J. , Azamar-Barrios, J. A. , and Oskam, G. , 2010, “ Dye-Sensitized Solar Cells With Natural Dyes Extracted From Achiote Seeds,” Sol. Energy Mater. Sol. Cells, 94(1), pp. 40–44. [CrossRef]
Agarkar, S. A. , Kulkarni, R. R. , Dhas, V. V. , Chinchansure, A. A. , Hazra, P. , Joshi, S. P. , and Ogale, S. B. , 2011, “ Isobutrin From Butea Monosperma (Flame of the Forest): A Promising New Natural Sensitizer Belonging to Chalcone Class,” ACS Appl. Mater. Interfaces, 3(7), pp. 2440–2444. [CrossRef] [PubMed]
Park, K. , Kim, T. , Han, S. , Ko, H. , Lee, S. , Song, Y. , Kim, J. , and Lee, J. , 2014, “ Light Harvesting Over a Wide Range of Wavelength Using Natural Dyes of Gardenia and Cochineal for Dye-Sensitized Solar Cells,” Spectrochim. Acta, Part A, 128(7), pp. 868–873. [CrossRef]
Shanmugam, V. , Manoharan, S. , Sharafali, A. , Anandan, S. , and Murugan, R. , 2015, “ Green Grasses as Light Harvesters in Dye Sensitized Solar Cells,” Spectrochim. Acta, Part A, 135(1), pp. 947–952. [CrossRef]
Abdel-Latif, M. S. , Abuiriban, M. B. , Dahoudi, N. A. , Al-Kahlout, A. M. , Taya, S. A. , El-Agez, T. M. , and El-Ghamri, H. S. , 2015, “ Dye-Sensitized Solar Cells Using Fifteen Natural Dyes as Sensitizers of Nanocrystalline TiO2,” Sci. Technol. Dev., 34(3), pp. 135–139. [CrossRef]
Uddin, J. , Islam, J. M. , Karim, E. , Khan, S. M. , Akhter, S. , Hoque, E. , and Khan, M. A. , 2015, “ Preparation and Characterization of Dye Sensitized Solar Cell Using Natural Dye Extract From Red Amaranth (Amaranthus sp.) as Sensitizer,” Int. J. Thin Films Sci. Technol., 4(2), pp. 141–146.
Abodunrin, T. J. , Obafemi, O. , Boyo, A. O. , Adebayo, T. , and Jimoh, R. , 2015, “ The Effect of Electrolyte on Dye Sensitized Solar Cells Using Natural Dye from Mango (M. indica L.) Leaf as Sensitizer,” Adv. Mater. Phys. Chem., 5(6), pp. 205–213. [CrossRef]
Hao, S. , Wu, J. , Huang, Y. , and Lin, J. , 2006, “ Natural Dyes as Photosensitizers for Dye-Sensitized Solar Cell,” Sol. Energy, 80(2), pp. 209–214. [CrossRef]
Furukawa, S. , Iino, H. , Iwamoto, T. , Kukita, K. , and Yamauchi, S. , 2009, “ Characteristics of Dye-Sensitized Solar Cells Using Natural Dye,” Thin Solid Films, 518(2), pp. 526–529. [CrossRef]
Hemalatha, K. V. , Karthick, S. N. , Raj, C. J. , Hong, N. Y. , Kim, S. K. , and Kim, H. J. , 2012, “ Performance of Kerria japonica and Rosa chinensis Flower Dyes as Sensitizers for Dye-Sensitized Solar Cells,” Spectrochim. Acta, Part A, 96(10), pp. 305–309. [CrossRef]
Nwanya, A. C. , Ugwuoke, P. E. , Ejikeme, P. M. , Oparaku, O. U. , and Ezema, F. I. , 2012, “ Jathropha curcas and Citrus aurantium Leaves Dye Extract for Use in Dye Sensitized Solar Cell With TiO2 Films,” Int. J. Electrochem. Sci., 7, pp. 11219–11235.
Ananth, S. , Vivek, P. , Arumanayagam, T. , and Murugakoothan, P. , 2014, “ Natural Dye Extract of Lawsonia Inermis Seed as Photo Sensitizer for Titanium Dioxide Based Dye Sensitized Solar Cells,” Spectrochim. Acta, Part A, 128(7), pp. 420–426. [CrossRef]
Polo, A. S. , and Iha, N. Y. M. , 2006, “ Blue Sensitizers for Solar Cells: Natural Dyes From Calafate and Jaboticaba,” Sol. Energy Mater. Sol. Cells, 90(13), pp. 1936–1944. [CrossRef]
Garcia, C. G. , Polo, A. S. , and Iha, N. Y. M. , 2003, “ Fruit Extracts and Ruthenium Polypyridinic Dyes for Sensitization of TiO2 in Photoelectrochemical Solar Cells,” J. Photochem. Photobiol., A, 160(1–2), pp. 87–91. [CrossRef]
Amao, Y. , Yamada, Y. , and Aoki, K. , 2004, “ Preparation and Properties of Dye-Sensitized Solar Cell Using Chlorophyll Derivative Immobilized TiO2 Film Electrode,” J. Photochem. Photobiol., A, 164(1–3), pp. 47–51. [CrossRef]
Maurya, I. C. , Srivastava, P. , and Bahadur, L. , 2016, “ Dye-Sensitized Solar Cell Using Extract From Petals of Male Flowers Luffa cylindrica L. as a Natural Sensitizer,” Opt. Mater., 52(2), pp. 150–156. [CrossRef]
Hao, S. , Wu, J. , Fan, L. , Huang, Y. , Lin, J. , and Wei, Y. , 2004, “ The Influence of Acid Treatment of TiO2 Porous Film Electrode on Photoelectric Performance of Dye-Sensitized Solar Cell,” Sol. Energy, 76(6), pp. 745–750. [CrossRef]
Rubinskiene, M. , Viskelis, P. , Jasutiene, I. , Viskeliene, R. , and Bobinas, C. , 2005, “ Impact of Various Factors on the Composition and Stability of Black Currant Anthocyanins,” Food Res. Int., 38(8–9), pp. 867–871. [CrossRef]
Saha, J. , Mukherjee, S. , Gupta, K. , and Gupta, B. , 2013, “ High-Performance Thin-Layer Chromatographic Analysis of Antioxidants Present in Different Parts of Saraca asoca (Roxb.) de Wilde,” J. Pharm. Res., 7(9), pp. 798–803.
Hagfeldt, A. , and Grätzel, M. , 1995, “ Light-Induced Redox Reactions in Nanocrystalline Systems,” Chem. Rev., 95(1), pp. 49–68. [CrossRef]
Hagfeldt, A. , and Grätzel, M. , 2000, “ Molecular Photovoltaics,” Acc. Chem. Res., 33(5), pp. 269–277. [CrossRef] [PubMed]
Cherepy, N. J. , Smestad, G. P. , Grätzel, M. , and Zhang, J. Z. , 1997, “ Ultrafast Electron Injection: Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode,” J. Phys Chem. B, 101(45), pp. 9342–9351. [CrossRef]
Mozaffari, S. A. , Saeidi, M. , and Rahmanian, R. , 2015, “ Photoelectric Characterization of Fabricated Dye-Sensitized Solar Cell Using Dye Extracted From Red Siahkooti Fruit as Natural Sensitizer,” Spectrochim. Acta, Part A, 142, pp. 226–231. [CrossRef]
Luo, P. , Niu, H. , Zheng, G. , Bai, X. , Zhang, M. , and Wang, W. , 2009, “ From Salmon Pink to Blue Natural Sensitizers for Solar Cells: Canna indica L., Salvia Splendens, Cowberry and Solanum nigrum L.,” Spectrochim. Acta, Part A, 74(4), pp. 936–942. [CrossRef]
Li, C. , Yang, X. , Chen, R. , Pan, J. , Tian, H. , Zhu, H. , Wang, X. , Hagfeldt, A. , and Sun, L. , 2007, “ Anthraquinone Dyes as Photosensitizers for Dye-Sensitized Solar Cells,” Sol. Energy Mater. Sol. Cells, 91(19), pp. 1863–1871. [CrossRef]
Suhaimi, S. , Shahimin, M. M. , Alahmed, Z. A. , Chyský, J. , and Reshak, A. H. , 2015, “ Materials for Enhanced Dye-Sensitized Solar Cell Performance: Electrochemical Application,” Int. J. Electrochem. Sci., 10(4), pp. 2859–2871.
Alhamed, M. , Issa, A. S. , and Doubal, A. W. , 2012, “ Studying of Natural Dyes Properties as Photo-Sensitizer for Dye Sensitized Solar Cells (DSSC),” J. Electron Devices, 16(11), pp. 1370–1383.
Huizhi, Z. , Wu, L. , Gao, Y. , and Ma, T. , 2011, “ Dye-Sensitized Solar Cells Using 20 Natural Dyes as Sensitizers,” J. Photochem. Photobiol., A, 219(2–3), pp. 188–194.
Riyaz, A. , Ali, M. , and Nayan, N. , 2010, “ Fabrication and Analysis of Dye-Sensitized Solar Cell Using Natural Dye Extracted From Dragon Fruit,” Int. J. Integr. Eng., 2(3), pp. 1–8.
Hossein, B. M. , 2009, “ Performance of Nanostructured Dye-Sensitized Solar Cell Utilizing Natural Sensitizer Operated With Platinum and Carbon Coated Counter Electrodes,” J. Nanomater. Biostructures, 4(4), pp. 723–727.

Figures

Grahic Jump Location
Fig. 1

(a) Saraca asoca flowers, (b) dried Saraca asoca flowers, and (c) crushed powder

Grahic Jump Location
Fig. 2

Chemical structures of gallic acid and quercetin present in Saraca asoca flowers

Grahic Jump Location
Fig. 3

Sketch showing functioning of DSSC

Grahic Jump Location
Fig. 4

UV–Vis absorption spectrum of (a) TiO2 photoanode, (b) the dye solution obtained from flowers of Saraca asoca, and (c) dye after adsorption onto the TiO2 surface. Inset shows the images of dye solution obtained from flowers of Saraca asoca and dye-anchored TiO2 film.

Grahic Jump Location
Fig. 5

Basic molecular structure of anthocyanin and the binding between anthocyanin with TiO2

Grahic Jump Location
Fig. 6

Infrared spectra of extracts obtained from Saraca asoca flowers

Grahic Jump Location
Fig. 7

Cyclic voltammogram of natural dye extracted from Saraca asoca flowers at platinum electrode in acetonitrile solution containing 0.1 M TBAP supporting electrolyte, figures on the curves being the scan rates (mV s−1)

Grahic Jump Location
Fig. 8

Schematic energy-level diagram showing electron injection from excited dye molecule to the conduction band of TiO2 and subsequent regeneration of the dye molecule

Grahic Jump Location
Fig. 9

Photocurrent–voltage (J–V) curve for the DSSC sensitized by natural dye Saraca asoca under visible light illumination of intensity 100 mW/cm2 (electrolyte composition: 0.2 M LiI; 0.02 M I2 in acetonitrile)

Grahic Jump Location
Fig. 10

Transient current–time (Jphotot) profile for the DSSC sensitized by Saraca asoca obtained under visible light illumination. Electrolyte composition and intensity are the same as in Fig. 9.

Grahic Jump Location
Fig. 11

Power versus voltage curve of the DSSC using the natural dyes extracted from the Saraca asoca flowers

Grahic Jump Location
Fig. 12

IPCE of Saraca asoca natural dye extracts used as sensitizer for TiO2-based DSSC. The inset image shows the absorption spectra of (a) bare TiO2 film and (b) dye solution obtained from flowers of Saraca asoca.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In