0
Research Papers

Optimum Solar Humidification–Dehumidification Desalination for Microgrids and Remote Area Communities

[+] Author and Article Information
Khalid M. Abd El-Aziz

Department of Mechanical
Design and Production,
Cairo University,
Cairo 12316, Egypt
e-mail: abdelaziz.k@eng.cu.edu.eg

Karim Hamza

Mem. ASME
Department of Mechanical Engineering,
University of Michigan,
Ann Arbor, MI 48109-2102
e-mail: khamza@umich.edu

Mohamed El-Morsi

Mem. ASME
Department of Mechanical Engineering,
American University in Cairo,
New Cairo 11835, Egypt;
Department of Mechanical Engineering,
Ain Shams University,
Cairo 11566, Egypt
e-mail: melmorsi@aucegypt.edu

Ashraf O. Nassef

Mem. ASME
Department of Mechanical Engineering,
American University in Cairo,
New Cairo 11835, Egypt
e-mail: nassef@aucegypt.edu

Sayed M. Metwalli

Fellow ASME
Department of Mechanical
Design and Production,
Cairo University,
Cairo 12316, Egypt
e-mail: metwallis2@asme.org

Kazuhiro Saitou

Mem. ASME
Department of Mechanical Engineering,
University of Michigan,
Ann Arbor, MI 48109-2102
e-mail: kazu@umich.edu

1Corresponding author.

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received May 29, 2015; final manuscript received December 29, 2015; published online February 1, 2016. Assoc. Editor: M. Keith Sharp.

J. Sol. Energy Eng 138(2), 021005 (Feb 01, 2016) (8 pages) Paper No: SOL-15-1161; doi: 10.1115/1.4032477 History: Received May 29, 2015; Revised December 29, 2015

This paper presents the optimization of a solar-powered humidification–dehumidification (HDH) desalination system for remote areas where it is assumed that only minimal external electric power (for operating control systems and auxiliaries) is available. This work builds on a previous system by disconnecting the condenser from the saline water cycle and by introducing a solar air heater (SAH) to further augment the humidification performance. In addition, improved thermal simulation models for the condenser and the humidifier are used to obtain more accurate productivity estimations. The heuristic gradient projection (HGP) optimization procedure is also refactored to reduce the number of function evaluations, to reach the minimum unit cost of produced fresh water, compared to genetic algorithms (GAs). A case study which assumes a desalination plant on the Red Sea near the city of Hurghada, Egypt, is presented. The optimum systems are shown to significantly reduce the unit cost of fresh water production below the reported minimum ($1.3/m3 compared to $3/m3), while keeping specific energy consumption within the reported range, 120–550 kWh/m3, for solar HDH systems.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ghermandi, A. A. , and Messalem, R. , 2009, “ Solar-Driven Desalination With Reverse Osmosis: The State of the Art,” Desalin. Water Treat., 7, pp. 285–296. [CrossRef]
Al-Karaghouli, A. , and Kazmerski, L. L. , 2013, “ Energy Consumption and Water Production Cost of Conventional and Renewable Energy Powered Desalination Processes,” Renewable Sustainable Energy Rev., 24, pp. 343–356. [CrossRef]
Sharqawy, M. H. , Lienhard, J. H. , and Zubair, S. M. , 2010, “ On Thermal Performance of Seawater Cooling Towers,” ASME J. Eng. Gas Turbines Power, 133(4), p. 043001. [CrossRef]
Narayan, G. , Sharqawy, M. , Summers, E. , Lienhard, J. , Zubair, S. , and Antar, M. , 2010, “ The Potential of Solar-Driven Humidification–Dehumidification Desalination for Small-Scale Decentralized Water Production,” Renewable Sustainable Energy Rev., 14(4), pp. 1187–1201. [CrossRef]
Devres, Y. O. , 1994, “ Psychrometric Properties of Humid Air: Calculation Procedures,” Appl. Energy, 48(1), pp. 1–18. [CrossRef]
Zamen, M. , Amidpour, M. , and Soufari, S. M. , 2009, “ Cost Optimization of a Solar Humidification–Dehumidification Desalination Unit Using Mathematical Programming,” Desalination, 239, pp. 92–99. [CrossRef]
El-Morsi, M. , Hamza, K. , Nassef, A. O. , Metwalli, S. M. , and Saitou, K. , 2012, “ Integrated Optimization of a Solar-Powered Humidification–Dehumidification Desalination System for Small Communities,” ASME Paper No. DETC2012-70783.
Abd El-Aziz, K. M. , El-Morsi, M. , Hamza, K. , Nassef, A. O. , Metwalli, S. M. , and Saitou, K. , 2013, “ Optimum Solar-Powered HDH Desalination System for Semi-Isolated Communities,” ASME Paper No. DETC2013-12876.
Farid, M. M. , Parekh, S. , Selman, J. R. , and Al-Hallag, S. , 2002, “ Solar Desalination With a Humidification–Dehumidification Cycle: Mathematical Modeling of the Unit,” Desalination, 151(2), pp. 153–164. [CrossRef]
Al-Hallaj, S. , Farid, M. , and Tamimi, A. , 1998, “ Solar Desalination With a Humidification–Dehumidification Cycle: Performance of the Unit,” Desalination, 120(3), pp. 273–280. [CrossRef]
Yuan, G. , and Zhang, H. , 2007, “ Mathematical Modeling of a Closed Circulation Solar Desalination Unit With Humidification–Dehumidification,” Desalination, 205, pp. 156–162. [CrossRef]
Ben-Bacha, H. , Damak, T. , and Bouzguenda, M. , 2003, “ Experimental Validation of the Distillation Module of a Desalination Station Using the SMCEC Principle,” Renewable Energy, 28(15), pp. 2335–2354. [CrossRef]
Farsad, S. , and Behzadmehr, A. , 2011, “ Analysis of a Solar Desalination Unit With Humidification–Dehumidification Cycle Using DoE Method,” Desalination, 278(1–2), pp. 70–76. [CrossRef]
Orfi, J. , Galanis, N. , and Laplante, M. , 2007, “ Air Humidification–Dehumidification for a Water Desalination System Using Solar Energy,” Desalination, 203, pp. 471–481. [CrossRef]
Metwalli, S. M. , 2002, Optimum Design: Advanced Lecture Notes, Cairo University Press, Cairo, Egypt.
Metwalli, S. M. , 2004, “ Synthesis Paradigm in Computer Aided Design and Optimization of Mechanical Components and Systems,” Eighth Cairo University Conference on Mechanical Design and Production, Cairo, Egypt, Jan. 4–6, pp. 3–11.
Metwalli, S. M. , 2012, “ Heuristic GP Optimization Technique for Design Synthesis of Monotonic Objectives,” World Scientific Proceedings Series on Computer Engineering and Information Science, Vol. 7, C. Kahraman , E. E. Kerre , and F. T. Bozbura , eds., World Scientific Publishing, Hackensack, NJ, pp. 1233–1238.,
Chapman, C. D. , Saitou, K. , and Jakiela, M. J. , 1994, “ Genetic Algorithms as an Approach to Configuration and Topology Design,” ASME J. Mech. Des., 116(4), pp. 1005–1012. [CrossRef]
Stine, W. , and Geyer, M. , 2001, Power From the Sun, John Wiley and Sons, NJ, Chap. 3.
Hottel, H. C. , and Whillier, A. , 1958, “ Evaluation of Flat-Plate Collector Performance,” Conference on the Use of Solar Energy, Tucson, AZ, Volume 2, Part 1, Page 74–104.
Duffie, J. A. , and Beckman, W. , 1974, Solar Engineering of Thermal Processes, 2nd ed., Wiley-Interscience, New York, pp. 250–296.
Gill, R. , Singh, S. , and Singh, P. P. , 2012, “ Low Cost Solar Air Heater,” Energy Convers. Manage., 57, pp. 131–142. [CrossRef]
Mhergoo, M. , and Amidpour, M. , 2011, “ Derivation of Optimal Geometry of a Multi-Effect Humidification–Dehumidification Desalination Unit: A Constructal Design,” Desalination, 281, pp. 234–242. [CrossRef]
Cooling Tower Depot, 2013, “ Cooling Tower Depot Parts Warehouse: CTD-19MA10,” Cooling Tower Depot, Inc., Golden, CO, http://www.coolingtowerdepot.com/content/parts/product-detail/1608
“Alibaba.com Hong Kong Limited,” http://www.alibaba.com/
Rao, S. S. , 1996, Engineering Optimization: Theory and Practice, 3rd ed., Wiley-Interscience, New York, pp. 455–459.
Abd El-Aziz, K. M. , El-Morsi, M. , Hamza, K. , Nassef, A. O. , Metwalli, S. M. , and Saitou, K. , 2014, “ Optimum Solar HDH Desalination for Semi-Isolated Communities Using HGP and GA's,” ASME Paper No. DETC2014-34598.
Metwalli, S. M. , and Mayne, R. W. , 1977, “ New Optimization Techniques,” ASME Paper No. 77-DAC-9.
Elzoghby, A. A. , Metwalli, S. M. , and Shawki, G. S. A. , 1980, “ Linearized Ridge-Path Method for Function Minimization,” J. Optim. Theory Appl., 30(2), pp. 161–179. [CrossRef]
Egan, C. , 2013, “ Optimera—A Multithreaded Optimization Library in C#,” http://cosmobomb.com/wp/?page_id=656
Microsoft, 2010, “ Microsoft Visual C# Express (2010),” Microsoft Corp., Albuquerque, NM, http://www.microsoft.com/visualstudio/eng/downloads
2016, “EnergyPlus Energy Simulation Software,” National Renewable Energy Laboratory, Golden, CO.
Ettouney, H. M. , and El-Dessouky, H. T. , 2002, “ Evaluating the Economics of Desalination,” Chem. Eng. Prog., 98(12), pp. 32–40.
NREL, 2011, System Advisor Model, National Renewable Energy Laboratory, Golden, CO.
Müller-Holst, H. , 2006, “ Solar Thermal Desalination Using the Multiple Effect Humidification (MEH) Method,” Solar Desalination for the 21st Century, Springer Science+Business Media, New York, pp. 215–225.
Skinner, J. E. , Strasser, M. N. , Brown, B. M. , and Selvam, R. P. , 2014, “ Testing of High-Performance Concrete as a Thermal Energy Storage Medium at High Temperatures,” ASME J. Sol. Energy Eng., 136(2), p. 021004. [CrossRef]
Ma, Z. , Glatzmaier, G. , and Mehos, M. , 2014, “ Fluidized Bed Technology for Concentrating Solar Power With Thermal Energy Storage,” ASME J Sol. Energy Eng., 136(3), p. 031014. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic diagram for a solar HDH desalination system

Grahic Jump Location
Fig. 2

Schematic diagram for the system previously studied by the authors [8]

Grahic Jump Location
Fig. 3

Schematic diagram for modified system

Grahic Jump Location
Fig. 4

Volume element of the humidifier

Grahic Jump Location
Fig. 5

HGP optimization procedure

Grahic Jump Location
Fig. 6

Daily cycle of solar radiation and water production for the optimum 500 m2 system

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In