Research Papers

The Influence of Nanoparticle Fillers on the Effectiveness of Phosphorus Diffusion Pastes

[+] Author and Article Information
Rudolf Nüssl

NanoSciences Innovation Centre,
Department of Physics,
University of Cape Town,
Rondebosch 7700, South Africa
e-mail: rudolf.nuessl@gmx.de

Josef Biba

Institut für Physik,
Universität der Bundeswehr München,
Werner Heisenberg-Weg 39,
Neubiberg 85577, Germany

David Britton

NanoSciences Innovation Centre,
Department of Physics,
University of Cape Town,
Rondebosch 7700, South Africa

1Corresponding author.

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received November 12, 2014; final manuscript received September 30, 2015; published online December 10, 2015. Editor: Robert F. Boehm.

J. Sol. Energy Eng 138(1), 011008 (Dec 10, 2015) (5 pages) Paper No: SOL-14-1335; doi: 10.1115/1.4031944 History: Received November 12, 2014; Revised September 30, 2015

A phosphosilicate polymer spin-on glass dopant has been adapted to produce a screen printable N-type diffusion pastes using different types of nanoparticles as functional additives to quantitatively change the doping strength of the paste. Strong qualitative and quantitative differences in the resulting phosphorous concentration profiles after diffusion have been found between different compositions. Not only is an intermediate doping level obtainable if silicon nanoparticles are used instead of silica but also a shallower dopant depth is also achieved. The electrical quality of the layer formed by diffusing phosphorus into the surface of a P-type silicon wafer has been investigated by the fabrication and testing of P-N junction solar cells. The devices exhibit diodelike current–voltage (IV) characteristics with open-circuit voltages of 0.437 V and 0.523 V and short-circuit current densities of 1.88 mA/cm2 and 4.78 mA/cm2 indicating a low doping level of the cell emitter and a relatively high series resistance of the junction.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Szlufcik, J. , Elgamel, E. , Ghannam, M. , Nijs, J. , and Mertens, R. , 1991, “ Simple Integral Screen Printing Process for Selective Emitter Polycrystalline Silicon Solar Cells,” Appl. Phys. Lett., 59(13), pp. 1583–1584. [CrossRef]
Tonini, D. , Bottosso, C. , Cellere, G. , Furin, V. , Galiazzo, M. , Kumar, P. , Tanner, D. , and Voltan, A. , 2011, “ Efficiency Gain in c-Si Cells Through Selective Emitter and Double Printing,” Energy Procedia, 8(1), pp. 598–606. [CrossRef]
Strehlke, S. , Sarti, S. , Krotkus, A. , Grigoras, K. , and Levy-Clement, C. , 1997, “ The Porous Silicon Emitter Concept Applied to Multicrystalline Silicon Solar Cells,” Thin Solid Films, 297(1–2), pp. 291–295. [CrossRef]
Lee, E. , Cho, K. , Oh, D. , Shim, J. , Lee, H. , Choi, J. , Kim, J. , Shin, J. , Lee, S. , and Lee, H. , 2012, “ Exceeding 19% Efficient 6 Inch Screen Printed Crystalline Silicon Solar Cells With Selective Emitter,” Renewable Energy, 42(1), pp. 95–98. [CrossRef]
Liang, Z. , Zeng, F. , Song, H. , and Shen, H. , 2013, “ Effect on Porous Si and an Etch-Back Process on the Performance of a Selective Emitter Solar Cell,” Sol. Energy. Mater. Sol. Cells, 109, pp. 26–32. [CrossRef]
Dube, C. E. , Tsefrekas, B. , Buzby, D. , Tavares, R. , Zhang, W. , Gupta, A. , Low, R. J. , Skinner, W. , and Mullin, J. , 2011, “ High Efficiency Selective Emitter Cells Using Patterned Ion Implantation,” Energy Procedia, 8(1), pp. 706–711. [CrossRef]
Prathap, P. , Bartringer, J. , and Slaoui, A. , 2013, “ Selective Emitter Formation by Laser Doping of Spin-On Sources,” Appl. Surf. Sci., 278(1), pp. 173–179. [CrossRef]
Antoniadis, H. , Jiang, F. , Shan, W. , and Liu, Y. , 2010, “ All Screen Printed Mass Produced Silicon Ink Selective Emitter Solar Cells,” 35th Photovoltaic Specialists Conference (PVSC), Honolulu, HI, June 20–25, pp. 1193–1196.
Poplavsky, D. , and Abbott, M. , 2013, “ Methods of Forming a Low Resistance Silicon–Metal Contact,” Assignee: Innovalight, Inc., Sunnyvale, CA, U.S. Patent No. 8,361,834 B2.
Recart, F. , Freire, I. , Perez, L. , Lago-Aurrekoetxea, R. , Jimeno, J. C. , and Bueno, G. , 2007, “ Screen Printed Boron Emitters for Solar Cells,” Sol. Energy Mater Sol. Cells, 91(10), pp. 897–902. [CrossRef]
Edwards, M. , Bocking, J. , Cotter, E. , and Bennett, N. , 2008, “ Screen-Print Selective Diffusions for High-Efficiency Industrial Silicon Solar Cells,” Prog. Photovoltaics, 16(1), pp. 31–45. [CrossRef]
Salami, J. , Pham, T. , Khadilkar, C. , McViker, K. , and Shaikh, A. , 2004, “ Characterization of Screen Printed Phosphorous Diffusion Paste for Silicon Solar Cells,” Technical Digest of the 14th Photovoltaic Solar Energy Conference (PVSEC), Bangkok, Thailand, Jan. 26–Feb. 1, pp. 263–264.
Kwon, T. W. , Yang, D. H. , Ju, M. K. , Jung, W. W. , Kim, S. Y. , Lee, Y. W. , Gong, D. Y. , and Yi, J. , 2011, “ Screen Printed Phosphorus Diffusion for Low-Cost and Simplified Industrial Mono-Crystalline Silicon Solar Cells,” Sol. Energy Mater Sol. Cells, 95(1), pp. 14–17. [CrossRef]
Zhong, S. , Shen, W. , Liu, F. , and Li, X. , 2013, “ Mass Production of High Efficient Selective Emitter Crystalline Silicon Solar Cells Employing Phosphorus Ink Technology,” Sol. Energy Mater Sol. Cells, 117(1), pp. 483–488. [CrossRef]
Uzum, A. , Hamdi, A. , Nagashima, S. , Suzuki, S. , Suzuki, H. , Yoshiba, S. , Dhamrin, M. , Kamisako, K. , Sato, H. , Katsuma, K. , and Kato, K. , 2013, “ Selective Emitter Formation Process Using Single Screen-Printed Phosphorus Diffusion Source,” Sol. Energy Mater Sol. Cells, 109(1), pp. 288–293. [CrossRef]
Hilali, M. , Jeong, J. W. , Rohatgi, A. , Meier, D. L. , and Carrol, A. F. , 2002, “ Optimization of Self-Doping Ag Paste Firing to Achieve High Fill Factors on Screen-Printed Silicon Solar Cells With a 100 Ω/sq. Emitter,” 29th Photovoltaic Specialists Conference (PVSC), New Orleans, LA, May 19–24, Poster 1P2.17.
Leung, R. Y. , Fan, W. , and Nedbal, J. , 2012, “ Composition for Forming Doped Regions in Semiconductor Substrates, Methods for Fabricating Such Compositions, and Methods for Forming Doped Regions Using Such Compositions,” Assignee: Honeywell International Inc., Morristown, NJ, U.S. Patent No. 8,324,089 B2.
Britton, D. T. , Odo, E. A. , GoroGonfa, G. , Jonah, E. O. , and Härting, M. , 2009, “ Size Distribution and Surface Characteristics of Silicon Nanoparticles,” J. Appl. Crystallogr., 42(3), pp. 448–456. [CrossRef]
Jonah, E. O. , Britton, D. T. , Beaucage, P. , Rai, D. K. , Beaucage, G. , Magunje, B. , Ilavsky, J. , Scriba, M. R. , and Härting, M. , 2012, “ Topological Investigation of Electronic Silicon Nanoparticulate Aggregates Using Ultra Small Angle X-Ray Scattering,” J. Nanopart. Res., 14(11), p. 1249. [CrossRef]
Britton, D. T. , and Härting, M. , 2009, “ Printed Nanoparticulate Composites for Silicon Thick-Film Electronics,” Pure Appl. Chem., 78(9), pp. 1723–1739.
Richards, B. S. , Cotter, J. E. , Honsberg, C. B. , and Wenham, S. R. , 2000, “ Novel Uses Of TiO2 in Crystalline Silicon Solar Cells,” IEEE 28th Photovoltaic Specialists Conference (PVSC), Anchorage, AK, Sept. 15–22, pp. 375–378.
Roy, S. R. , and Haji-Sheik, A. , 1996, “ Modeling and Analysis of a New Multiwafer Hot Wall Phosphorus Doping Reactor,” J. Electrochem. Soc., 143(4), pp. 1362–1371. [CrossRef]
Shimakura, K. , Suzuki, T. , and Yadoiwa, Y. , 1975, “ Boron and Phosphorus Diffusion Through an SiO2 Layer From a Doped Polycrystalline Si Source Under Various Drive-in Ambients,” Sol. State Electr., 18(11), pp. 991–995. [CrossRef]
Susa, M. , Kawagishi, K. , Tanaka, N. , and Nagata, K. , 1997, “ Diffusion Mechanism of Phosphorus From Phosphorous Vapor in Amorphous Silicon Dioxide Film Prepared by Thermal Oxidation,” J. Electrochem. Soc., 144(7), pp. 2552–2558. [CrossRef]
Ellis, K. A. , and Buhrman, R. A. , 1999, “ Phosphorus Diffusion in Silicon Oxide and Oxynitride Gate Dielectrics,” Electrochem. Solid Struct., 2(10), pp. 516–518. [CrossRef]
Kumar, D. , Saravanan, S. , and Suratkar, P. , 2012, “ Effect of Oxygen Ambient During Phosphorous Diffusion on Silicon Solar Cell,” J. Renewable Sustainable Energy, 4(3), p. 033105. [CrossRef]
Debarge, L. , Schott, M. , Muller, J. C. , and Monna, R. , 2002, “ Selective Emitter Formation With a Single Screen-Printed P-Doped Paste Deposition Using Out-Diffusion in an RTP-Step,” Sol. Energy. Mater. Sol. Cells, 74(1–4), pp. 71–75. [CrossRef]


Grahic Jump Location
Fig. 2

Cross-sectional SEM micrograph of printed layer of the Si nanoparticle modified diffusion paste: (a) as-printed and (b) after in-diffusion of phosphorus at 1000 °C. (c) Wafer surface after removal of the printed layer by BFH etching.

Grahic Jump Location
Fig. 1

Adjusted temperature profile of the diffusion furnace

Grahic Jump Location
Fig. 3

SIMS depth profiles of the phosphorus concentration in P-type wavers obtained from SiO2, Si, and TiO2 nanoparticle modified dopant pastes at a diffusion regime of 1000 °C for 10 min

Grahic Jump Location
Fig. 4

Diffusion model of the three inks investigated. Sample a with SiO2 ink creates the highest doping level due to phosphorus' low solubility and diffusion coefficients in SiO2. Thus, a large fraction of the phosphorus can get incorporated into the wafer. Sample b with nanoparticulate silicon ink creates an intermediate doping level. One fraction of the P dopant gets incorporated into the Si nanoparticles, and the other fraction gets incorporated into the wafer. In sample c basically no phosphorus gets incorporated into the wafer because the phosphorus reacts with TiO2 before diffusion sets in.

Grahic Jump Location
Fig. 5

SIMS profiles of phosphorus diffused P-type wafers using the Si nanoparticulate modified dopant paste, performed at 900 °C and 1000 °C, respectively

Grahic Jump Location
Fig. 6

IV curves of diodes in darkness and under one sun (100 mW/cm2) illumination. Devices were manufactured from phosphorus diffused P-type wavers using the Si nanoparticulate modified dopant paste, performed at 1000 °C and 900 °C, respectively.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In