Research Papers

Fluid–Structure Interaction in the Flexible Porous Stratification Manifold

[+] Author and Article Information
Shuping Wang

Department of Mechanical Engineering,
University of Minnesota,
111 Church Street S.E.,
Minneapolis, MN 55455
e-mail: wang2807@umn.edu

Jane H. Davidson

Fellow ASME
Department of Mechanical Engineering,
University of Minnesota,
111 Church Street S.E.,
Minneapolis, MN 55455
e-mail: jhd@umn.edu

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received May 27, 2015; final manuscript received October 8, 2015; published online November 25, 2015. Assoc. Editor: Jorge E. Gonzalez.

J. Sol. Energy Eng 138(1), 011005 (Nov 25, 2015) (8 pages) Paper No: SOL-15-1160; doi: 10.1115/1.4031947 History: Received May 27, 2015; Revised October 08, 2015

A model of the flexible porous manifold that captures the interaction between the flow field and the deformation of the manifold is developed and applied to understand how the fabric manifold works for conditions expected in solar water heaters. Contrary to the widely held hypothesis that the change of cross-sectional area induced by the fluid–structure interaction is beneficial, the numerical results demonstrate the change of cross-sectional area has no significant impact on the effectiveness of the manifold. In comparison to a rigid porous manifold, the performance of the flexible manifold is slightly worse because the collapse of the manifold encourages entrainment. The dimensionless permeability plays a crucial role in determining the performance and can be selected to limit entrainment and release fluid near the vertical level of neutral buoyancy.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Wuestling, M. D. , Klein, S. A. , and Duffie, J. A. , 1985, “ Promising Control Alternatives for Solar Water Heating Systems,” ASME J. Sol. Energy Eng., 107(3), pp. 215–221. [CrossRef]
Hollands, K. G. T. , and Lightstone, M. F. , 1989, “ A Review of Low-Flow, Stratified-Tank Solar Water Heating Systems,” Sol. Energy, 43(2), pp. 97–105. [CrossRef]
Han, Y. M. , Wang, R. Z. , and Dai, Y. J. , 2009, “ Thermal Stratification Within the Water Tank,” Renewable Sustainable Energy Rev., 13(5), pp. 1014–1026. [CrossRef]
Loehrke, R. I. , Gari, H. N. , and Sharp, M. K. , 1978, “ Passive Technique for Enhancing Thermal Stratification in Liquid Storage Tanks,” ASME Paper No. 78-HT-50.
Gari, H. , Loehrke, R. , and Holzer, J. , 1979, “ Performance of an Inlet Manifold for a Stratification Storage Tank,” ASME Paper No. 79-HT-67.
Sharp, M. K. , and Loehrke, R. I. , 1979, “ Stratified Thermal Storage in Residential Solar Energy Applications,” J. Energy, 3(2), pp. 106–113. [CrossRef]
Gari, H. N. , and Loehrke, R. I. , 1982, “ Controlled Buoyant Jet for Enhancing Stratification in Liquid Storage Tank,” ASME J. Fluids Eng., 104(4), pp. 475–481. [CrossRef]
Wang, S. , and Davidson, J. H. , 2014, “ Performance of Rigid Porous Stratification Manifolds With Interpretation for Off-Design Operation,” ASME J. Sol. Energy Eng., 136(2), p. 021021. [CrossRef]
Davidson, J. H. , and Adams, D. A. , 1994, “ Fabric Stratification Manifolds for Solar Water Heating,” ASME J. Sol. Energy Eng., 116(3), pp. 130–136. [CrossRef]
Andersen, E. , Furbo, S. , and Fan, J. , 2007, “ Multilayer Fabric Stratification Pipes for Solar Tanks,” Sol. Energy, 81(10), pp. 1219–1226. [CrossRef]
Andersen, E. , Furbo, S. , and Hampel, M. , 2008, “ Investigations on Stratification Devices for Hot Water Heat Stores,” Int. J. Energy Res., 32(3), pp. 255–263. [CrossRef]
Shah, L. J. , Andersen, E. , and Furbo, S. , 2005, “ Theoretical and Experimental Investigations of Inlet Stratifiers for Solar Storage Tanks,” Appl. Therm. Eng., 25(14–15), pp. 2086–2099. [CrossRef]
Loehrke, R. I. , Holzer, J. C. , and Gari, H. N. , 1979, “ Stratification Enhancement in Liquid Thermal Storage Tanks,” J. Energy, 3(3), pp. 129–130. [CrossRef]
Gari, H. N. , 1983, “ Stratification Enhancement in Solar Liquid Thermal Storage Tanks: Analysis and Test of Inlet Manifolds,” Ph.D. thesis, Colorado State University, Fort Collions, CO.
Hughes, T. J. R. , and Lubliner, J. , 1973, “ On the One Dimensional Theory of Blood Flow in the Larger Vessels,” Math. Biosci., 18(1–2), pp. 167–170.
Whittaker, R. J. , Heil, M. , and Jensen, O. E. , 2010, “ A Rational Derivation of a Tube Law From Shell Theory,” Q. J. Mech. Appl. Math., 63(4), pp. 465–496. [CrossRef]
Heil, M. , and Jensen, O. E. , 2003, “ Flows in Deformable Tubes and Channels,” Flow Past Highly Compliant Boundaries and in Collapsible Tubes, P. W. Carpenter , and T. J. Pedley , eds., Springer, Dordrecht, pp. 21–22.
Gebart, B. , 1992, “ Permeability of Unidirectional Reinforcements for RTM,” J. Compos. Mater., 26(8), pp. 1100–1133. [CrossRef]
Belov, E. B. , Lomov, S. V. , and Verpoest, I. , 2004, “ Modelling of Permeability of Textile Reinforcements: Lattice Boltzmann Method,” Compos. Sci. Technol., 64(7), pp. 1069–1080. [CrossRef]
Chen, Z. R. , Ye, L. , and Lu, M. , 2010, “ Permeability Predictions for Woven Fabric Preforms,” J. Compos. Mater., 44(13), pp. 1569–1586. [CrossRef]
Tamayol, A. , and Bahrami, M. , 2011, “ Transverse Permeability of Fibrous Porous Media,” Phys. Rev. E, 83(4), p. 046314. [CrossRef]
Shapiro, A. H. , 1977, “ Steady Flow in Collapsible Tubes,” ASME J. Biomech. Eng., 99(3) pp. 126–147. [CrossRef]
Bertram, C. D. , 2009, “ Fluid Flow in Distensible Vessels,” Clin. Exp. Pharmacol. Physiol., 36(2), pp. 206–216. [CrossRef] [PubMed]
Elad, D. , Sahar, M. , and Avidor, J. M. , 1992, “ Steady Flow Through Collapsible Tubes: Measurements of Flow and Geometry,” ASME J. Biomech. Eng., 114(1), pp. 84–91. [CrossRef]
Kececioglu, I. , McClurken, M. E. , and Kamm, R. D. , 1981, “ Steady, Supercritical Flow in Collapsible Tubes—1. Experimental Observations,” J. Fluid Mech., 109, pp. 367–389. [CrossRef]
Heil, M. , 1999, “ Airway Closure: Occluding Liquid Bridges in Strongly Buckled Elastic Tubes,” ASME J. Biomech. Eng., 121(5), pp. 487–493. [CrossRef]
McClurken, M. E. , Kececioglu, I. , and Kamm, R. D. , 1981, “ Steady, Supercritical Flow in Collapsible Tubes—2. Theoretical Studies,” J. Fluid Mech., 109, pp. 391–415. [CrossRef]
Perry, R. H. , 1997, Perry's Chemical Engineers' Handbook, 7th ed., McGraw-Hill, New York, pp. 6-32–6-33.
Jinyun, Z. , Yi, L. , and Lam, J. , 2010, “ The Poisson Ratio and Modulus of Elastic Knitted Fabrics,” Text. Res. J., 80(18), pp. 1965–1969. [CrossRef]
Purchas, D. B. , and Sutherland, K. , 2002, Handbook of Filter Media, 2nd ed., Elsevier Science & Technology, Oxford, UK, pp. 69–71.
Duffie, J. A. , and Beckman, W. A. , 2013, Solar Engineering of Thermal Processes, 4th ed., Wiley, Hoboken, NJ, p. 488.
Lin, J. , 2010, “ Prediction of Elastic Properties of Plain Weave Fabric Using Geometrical Modeling,” Woven Fabric Engineering, Polona Dobnik Dubrovski, ed., InTech, Rijeka, Croatia.


Grahic Jump Location
Fig. 2

Illustration of local tube law [17]. Subplots on the right are the corresponding tube shapes.

Grahic Jump Location
Fig. 1

One-dimensional flexible manifold model domain. The dashed line represents the fabric porous wall. The solid line represents the attached inlet pipe and solid bottom of the manifold. The arrows illustrate the direction of the flow.

Grahic Jump Location
Fig. 6

The effect of dimensionless permeability K̃ on the dimensionless radial flow distribution dm˙∗/dz∗

Grahic Jump Location
Fig. 3

Dimensionless cross-sectional area A* change versus dimensionless axial position z*: (a) effect of dimensionless stiffness S̃, (b) effect of dimensionless axial prestress F̃, (c) effect of dimensionless permeability K̃, and (d) effect of Richardson number RiL

Grahic Jump Location
Fig. 4

Predicted manifold performance for the baseline case. The dimensionless stiffness S̃  = 20, the dimensionless axial prestress F̃  = 0.05, the dimensionless permeability K̃  = 0.1, and the Richardson number RiL = 400.

Grahic Jump Location
Fig. 5

Comparison of the dimensionless differential pressure P* and the dimensionless radial flow distribution dm˙∗/dz∗ between the flexible manifold and the rigid manifold



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In