Hader,
R. N.
,
Wallace,
R. D.
, and
McKinney,
R. W.
, 1952, “
Formaldehyde From Methanol,” Ind. Eng. Chem.,
44(7), pp. 1508–1518.
[CrossRef]
Hosseininejad,
S.
,
Afacan,
A.
, and
Hayes,
R. E.
, 2012, “
Catalytic and Kinetic Study of Methanol Dehydration to Dimethyl Ether,” Chem. Eng. Res. Des.,
90(6), pp. 825–833.
[CrossRef]
Olah,
G. A.
,
Goeppert,
A.
, and
Prakash,
G. K. S.
, 2009, “
Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons,” J. Org. Chem.,
74(2), pp. 487–498.
[CrossRef] [PubMed]
Adams,
J.
,
Clement,
D.
, and
Graham,
S.
, 1982, “
Synthesis of Methyl-Tbutyl Ether From Methanol and Isobutene Using a Clay Catalyst,” Clays Clay Mater.,
30(2), pp. 129–134.
[CrossRef]
Singh,
A. D.
, and
Krase,
N. W.
, 1935, “
Synthesis of Acetic Acid From Methanol and Carbon Monoxide,” Ind. Eng. Chem.,
27(8), pp. 909–914.
[CrossRef]
Bromberg,
L.
, and
Cheng,
W.
, 2010, “
Methanol as an Alternative Transportation Fuel in the US: Options for Sustainable and/or Energy-Secure Transportation,” Sloan Automotive Laboratory, Cambridge, MA, Technical Report UT-Battelle Subcontract No. 4000096701.
Nichols,
R. J.
, 2003, “
The Methanol Story: A Sustainable Fuel for the Future,” J. Sci. Ind. Res.,
62(1–2), pp. 97–105.
Nowell,
G. P.
, 1994, “
On the Road With Methanol: The Present and Future Benefits of Methanol Fuel,” Acurex Environmental, Durham, NC, Technical Report No. 2474.
Powell,
T.
, 1975, “
Racing Experiences With Methanol and Ethanol-Based Motor-Fuel Blends,” Society of Automotive Engineers, SAE Paper No. 750124.
Bahrami,
H.
, and
Faghri,
A.
, 2013, “
Review and Advances of Direct Methanol Fuel Cells: Part II: Modeling and Numerical Simulation,” J. Power Sources,
230, pp. 303–320.
[CrossRef]
Li,
X.
, and
Faghri,
A.
, 2013, “
Review and Advances of Direct Methanol Fuel Cells (DMFCs) Part I: Design, Fabrication, and Testing With High Concentration Methanol Solutions,” J. Power Sources,
226, pp. 223–240.
[CrossRef]
Yang,
C.-J.
, and
Jackson,
R. B.
, 2012, “
China's Growing Methanol Economy and Its Implications for Energy and the Environment,” Energy Policy,
41, pp. 878–884.
[CrossRef]
Su,
L.-W.
,
Li,
X.-R.
, and
Sun,
Z.-Y.
, 2013, “
The Consumption, Production and Transportation of Methanol in China: A Review,” Energy Policy,
61, pp. 130–138.
EPA, 2012, “
Methyl Tertiary Butyl Ether (MTBE),” U.S. Environmental Protection Agency, Washington, DC,
http://www.epa.gov/mtbe/
Lange,
J.-P.
, 2001, “
Methanol Synthesis: A Short Review of Technology Improvements,” Catal. Today,
64(12), pp. 3–8.
[CrossRef]
Su,
L.-W.
,
Li,
X.-R.
, and
Sun,
Z.-Y.
, 2013, “
Flow Chart of Methanol in China,” Renewable Sustainable Energy Rev.,
28, pp. 541–550.
[CrossRef]
Graaf,
G.
,
Stamhuis,
E.
, and
Beenackers,
A.
, 1988, “
Kinetics of Low-Pressure Methanol Synthesis,” Chem. Eng. Sci.,
43(12), pp. 3185–3195.
[CrossRef]
Klier,
K.
,
Chatikavanij,
V.
,
Herman,
R.
, and
Simmons,
G.
, 1982, “
Catalytic Synthesis of Methanol From CO/H
2. Part IV: The Effects of Carbon Dioxide,” J. Catal.,
74(2), pp. 343–360.
[CrossRef]
Chinchen,
G. C.
,
Denny,
P. J.
,
Parker,
D. G.
,
Spencer,
M. S.
, and
Whan,
D. A.
, 1987, “
Mechanism of Methanol Synthesis From CO
2/CO/H
2 Mixtures Over Copper/Zinc Oxide/Alumina Catalysts: Use of 14C-Labelled Reactants,” Appl. Catal.,
30(2), pp. 333–338.
[CrossRef]
Grabow,
L. C.
, and
Mavrikakis,
M.
, 2011, “
Mechanism of Methanol Synthesis on Cu Through CO
2 and CO Hydrogenation,” ACS Catal.,
1(4), pp. 365–384.
[CrossRef]
Lee,
S.
, 1990, Methanol Synthesis Technology,
CRC Press,
Boca Raton, FL.
Olah,
G. A.
,
Goeppert,
A.
, and
Prakash,
G. K. S.
, 2006, Beyond Oil and Gas: The Methanol Economy, 1st ed.,
Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, Germany.
Lemonidou,
A. A.
,
Valla,
J.
, and
Vasolos,
I. A.
, 2003, “
Methanol Production From Natural Gas: Assessment of CO2 Utilization in Natural Gas Reforming,” Carbon Dioxide Recovery and Utilization,
M. Aresta
, ed.,
Kluer Academic Publishers,
Dordrecht, pp. 379–394.
International Energy Agency, 2007, Tracking Industrial Energy Efficiency and CO2 Emissions: In Support of the G8 Plan of Action: Energy Indicators, Energy Indicators,
International Energy Agency.
Wender,
I.
, 1996, “
Reactions of Synthesis Gas,” Fuel Process. Technol.,
48(3), pp. 189–297.
[CrossRef]
Saito,
M.
, and
Murata,
K.
, 2004, “
Development of High Performance Cu/ZnO-Based Catalysts for Methanol Synthesis and the Water-Gas Shift Reaction,” Catal. Surv. Asia,
8(4), pp. 285–294.
[CrossRef]
Kubota,
T.
,
Hayakawa,
I.
,
Mabuse,
H.
,
Mori,
K.
,
Ushikoshi,
K.
,
Watanabe,
T.
, and
Saito,
M.
, 2001, “
Kinetic Study of Methanol Synthesis From Carbon Dioxide and Hydrogen,” Appl. Organomet. Chem.,
15(2), pp. 121–126.
[CrossRef]
Saito,
M.
, 1998, “
R & D Activities in Japan on Methanol Synthesis From CO
2 and H
2,” Catal. Surv. Jpn.,
2(2), pp. 175–184.
[CrossRef]
Toyir,
J.
,
Miloua,
R.
,
Elkadri,
N. E.
,
Nawdali,
M.
,
Toufik,
H.
,
Miloua,
F.
, and
Saito,
M.
, 2009, “
Sustainable Process for the Production of Methanol From CO
2 and H
2 Using Cu/ZnO-Based Multicomponent Catalyst,” Phys. Procedia,
2(3), pp. 1075–1079.
[CrossRef]
Doss,
B.
,
Ramos,
C.
, and
Atkins,
S.
, 2009, “
Optimization of Methanol Synthesis From Carbon Dioxide and Hydrogen: Demonstration of a Pilot-Scale Carbon-Neutral Synthetic Fuels Process,” Energy Fuels,
23(9), pp. 4647–4650.
[CrossRef]
Yang,
Y.
,
White,
M. G.
, and
Liu,
P.
, 2011, “
A Theoretical Study of Methanol Synthesis From CO2 Hydrogenation on Metal-Doped Cu (111) Surfaces,” J. Phys. Chem. A,
111(1), pp. 248–256.
Van-Dal,
E. S.
, and
Bouallou,
C.
, 2012, “
CO2 Abatement Through a Methanol Production Process,” Chem. Eng. Trans.,
29(2006), pp. 463–468.
Gallucci,
F.
,
Paturzo,
L.
, and
Basile,
A.
, 2004, “
An Experimental Study of CO
2 Hydrogenation Into Methanol Involving a Zeolite Membrane Reactor,” Chem. Eng. Process.: Process Intensif.,
43(8), pp. 1029–1036.
[CrossRef]
Gallucci,
F.
, and
Basile,
A.
, 2007, “
A Theoretical Analysis of Methanol Synthesis From CO
2 and H
2 in a Ceramic Membrane Reactor,” Int. J. Hydrogen Energy,
32(18), pp. 5050–5058.
[CrossRef]
Zhang,
Y.
,
Fei,
J.
,
Yu,
Y.
, and
Zheng,
X.
, 2007, “
Study of CO
2 Hydrogenation to Methanol Over Cu-V/γ-Al
2O
3 Catalyst,” J. Nat. Gas Chem.,
16(1), pp. 12–15.
[CrossRef]
Chinchen,
G. C.
, and
Spencer,
M. S.
, 1991, “
Sensitive and Insensitive Reactions on Copper Catalysts: The Water-Gas Shift Reaction and Methanol Synthesis From Carbon Dioxide,” Catal. Today,
10(3), pp. 293–301.
[CrossRef]
Joo,
O.-S.
,
Jung,
K.-D.
,
Moon,
I.
,
Rozovskii,
A. Y.
,
Lin,
G. I.
,
Han,
S.-H.
, and
Uhm,
S.-J.
, 1999, “
Carbon Dioxide Hydrogenation to Form Methanol Via a Reverse-Water-Gas-Shift Reaction (the Camere Process),” Ind. Eng. Chem. Res.,
38(5), pp. 1808–1812.
[CrossRef]
Liu,
G.
, 1985, “
The Role of CO
2 in Methanol Synthesis on Cu-Zn Oxide: An Isotope Labeling Study,” J. Catal.,
96(1), pp. 251–260.
[CrossRef]Energy Information Administration, Annual Energy Review, 2014, U.S. Energy Information Administration, Washington, DC, Table 1.2 Primary Energy Production by Source, 1949–2012.
U.S. DOE, 2013, “
Report of the Hydrogen Production Expert Panel: A Subcommittee of the Hydrogen & Fuel Cell Technical Advisory Committe,” U.S. Department of Energy, Washington, DC.
Holladay,
J.
,
Hu,
J.
,
King,
D.
, and
Wang,
Y.
, 2009, “
An Overview of Hydrogen Production Technologies,” Catal. Today,
139(4), pp. 244–260.
[CrossRef]
Mueller-Langer,
F.
,
Tzimas,
E.
,
Kaltschmitt,
M.
, and
Peteves,
S.
, 2007, “
Techno-Economic Assessment of Hydrogen Production Processes for the Hydrogen Economy for the Short and Medium Term,” Int. J. Hydrogen Energy,
32(16), pp. 3797–3810.
[CrossRef]
Gosselink,
J.
, 2002, “
Pathways to a More Sustainable Production of Energy: Sustainable Hydrogen—A Research Objective for Shell,” Int. J. Hydrogen Energy,
27(11–12), pp. 1125–1129.
[CrossRef]
Turner,
J. A.
, 2004, “
Sustainable Hydrogen Production,” Science,
305(5686), pp. 972–974.
[CrossRef] [PubMed]
Amos,
W. A.
, 1998, “
Costs of Storing and Transporting Hydrogen,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-570-25106.
von Helmolt,
R.
, and
Eberle,
U.
, 2007, “
Fuel Cell Vehicles: Status 2007,” J. Power Sources,
165(2), pp. 833–843.
[CrossRef]
Sakintuna,
B.
,
Lamaridarkrim,
F.
, and
Hirscher,
M.
, 2007, “
Metal Hydride Materials for Solid Hydrogen Storage: A Review,” Int. J. Hydrogen Energy,
32(9), pp. 1121–1140.
[CrossRef]
Jena,
P.
, 2011, “
Materials for Hydrogen Storage: Past, Present, and Future,” J. Phys. Chem. Lett.,
2(3), pp. 206–211.
[CrossRef]
Schlapbach,
L.
, and
Zuttel,
A.
, 2001, “
Hydrogen-Storage Materials for Mobile Applications,” Nature,
414(6861), pp. 353–358.
[CrossRef] [PubMed]
Zhang,
J.
,
Fisher,
T. S.
,
Ramachandran,
P. V.
,
Gore,
J. P.
, and
Mudawar,
I.
, 2005, “
A Review of Heat Transfer Issues in Hydrogen Storage Technologies,” ASME J. Heat Transfer,
127(12), p. 1391.
[CrossRef]
O'Malley,
K.
,
Ordaz,
G.
,
Adams,
J.
,
Randolph,
K.
,
Ahn,
C. C.
, and
Stetson,
N. T.
, 2014, “
Applied Hydrogen Storage Research and Development: A Perspective From the U.S. Department of Energy,” J. Alloys Compd.,
645, pp. S419–S422.
[CrossRef]U.S. DOE, Office of Energy Efficiency and Renewable Energy, The FreedomCAR and Fuel Partnership, 2009, “
Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles,” U.S. Department of Energy, Washington, DC.
Klebanoff,
L.
, and
Keller,
J.
, 2012, “
Final Report for the DOE Metal Hydride Center of Excellence,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2012-0786.
Zamfirescu,
C.
, and
Dincer,
I.
, 2009, “
Ammonia as a Green Fuel and Hydrogen Source for Vehicular Applications,” Fuel Process. Technol.,
90(5), pp. 729–737.
[CrossRef]
Jenkins,
D. R.
, 2000, “
Hypersonics Before the Shuttle: A Concise History of the X-15 Research Airplane,” National Aeronautics and Space Administration, Washington, DC, Technical Report No. NASA SP-2000-4518.
Worrell,
E.
,
Bernstein,
L.
,
Roy,
J.
,
Price,
L.
, and
Harnisch,
J.
, 2008, “
Industrial Energy Efficiency and Climate Change Mitigation,” Energy Effic.,
2(2), pp. 109–123.
[CrossRef]
Green,
L., Jr.
, 1982, “
Ammonia Energy Vector for the Hydrogen Economy,” Int. J. Hydrogen Energy,
7(4), pp. 355–359.
[CrossRef]
Avery,
W.
, 1988, “
A Role for Ammonia in the Hydrogen Economy,” Int. J. Hydrogen Energy,
13(12), pp. 761–773.
[CrossRef]
Lan,
R.
,
Irvine,
J. T.
, and
Tao,
S.
, 2012, “
Ammonia and Related Chemicals as Potential Indirect Hydrogen Storage Materials,” Int. J. Hydrogen Energy,
37(2), pp. 1482–1494.
[CrossRef]
Bartels,
J. R.
, and
Pate,
M. B.
, 2008, “
A Feasibility Study of Implementing an Ammonia Economy,” MS thesis, Iowa State University, Ames, IA, Paper No. 11132.
Morgan,
E.
,
Manwell,
J.
, and
McGowan,
J.
, 2014, “
Wind-Powered Ammonia Fuel Production for Remote Islands: A Case Study,” Renewable Energy,
72, pp. 51–61.
[CrossRef]
Pimentel,
D.
,
Marklein,
A.
,
Toth,
M. A.
,
Karpoff,
M. N.
,
Paul,
G. S.
,
McCormack,
R.
,
Kyriazis,
J.
, and
Krueger,
T.
, 2009, “
Food Versus Biofuels: Environmental and Economic Costs,” Hum. Ecol.,
37(1), pp. 1–12.
[CrossRef]
Sarin,
A.
, 2012, Biodiesel: Production and Properties,
Royal Society of Chemistry (RSC), Cambridge, UK.
Fukuda,
H.
,
Kondo,
A.
, and
Noda,
H.
, 2001, “
Biodiesel Fuel Production by Transesterification of Oils,” J. Biosci. Bioeng.,
92(5), pp. 405–416.
[CrossRef] [PubMed]
Rosenthal,
A.
, 1965, “
Energy Depot—A Concept for Reducing the Military Supply Burden,” SAE Paper No. 650050.
Grimes,
P.
, 1965, “
Energy Depot Fuel Production and Utilization,” SAE Paper No. 650051.
Beller,
M.
, and
Steinberg,
M.
, 1965, “
Liquid Fuel Synthesis Using Nuclear Power in a Mobile Energy Depot System,” Brookhaven National Laboratory, Upton, NY, Technical Report No. BNL 955 (T-396).
Willauer,
H. D.
,
Hardy,
D. R.
, and
Williams,
F. W.
, 2010, “
The Feasibility and Current Estimated Capital Costs of Producing Jet Fuel at Sea Using Carbon Dioxide and Hydrogen,” Naval Research Laboratory, Washington, DC, Technical Report No. NRL/MR/6180-10-9300.
Jarosch,
K.
,
Mazanec,
T.
,
McDaniel,
J.
,
Tonkovich,
A. L.
, and
Fitzgerald,
S.
, 2006, “
Compact, Mobile Synthetic Fuel Unit,” American Institute of Chemical Engineers Spring National Meeting, Orlando, FL, Apr. 23–27.
Avery,
W. D. R.
, and
Dugger,
G.
, 1985, “
Hydrogen Generation by Otec Electrolysis, and Economical Energy Transfer to World Markets Via Ammonia and Methanol,” Int. J. Hydrogen Energy,
10(11), pp. 727–736.
[CrossRef]
Dugger,
G.
, and
Francis,
E.
, 1977, “
Design of an Ocean Thermal Energy Plant Ship to Produce Ammonia Via Hydrogen,” Int. J. Hydrogen Energy,
2(3), pp. 231–249.
[CrossRef]
Brown,
D.
,
Rowe,
A.
, and
Wild,
P.
, 2014, “
Techno-Economic Comparisons of Hydrogen and Synthetic Fuel Production Using Forest Residue Feedstock,” Int. J. Hydrogen Energy,
39(24), pp. 12551–12562.
[CrossRef]
DiMascio,
F.
,
Willauer,
H. D.
,
Hardy,
D. R.
,
Lewis,
M. K.
, and
Williams,
F. W.
, 2010, “
Extraction of Carbon Dioxide From Seawater by an Electrochemical Acidification Cell Part I: Initial Feasibility Studies,” Naval Research Laboratory, Washington, DC, Technical Report No. NRL/MR/6180–10-9274.
Willauer,
H. D.
,
DiMascio,
F.
,
Hardy,
D. R.
,
Lewis,
M. K.
, and
Williams,
F. W.
, 2011, “
Extraction of Carbon Dioxide From Seawater by an Electrochemical Acidification Cell Part II—Laboratory Scaling Studies,” Naval Research Laboratory, Washington, DC, Technical Report No. NRL/MR/6180-11-9329.
Dahlgren,
E.
,
Gocmen,
C.
,
Lackner,
K.
, and
van Ryzin,
G.
, 2013, “
Small Modular Infrastructure,” Eng. Economist,
58(4), pp. 231–264.
[CrossRef]Research Triangle Institute International, 2010, “
Greenhouse Gas Emissions Estimation Methodologies for Biogenic Emissions From Selected Source Categories: Solid Waste Disposal Wastewater Treatment Ethanol Fermentation,” U.S. Environmental Protection Agency, Washington, DC, Technical Report No. EP-D-06-118.
Robertson,
E. P.
, 2007, “
Analysis of CO2 Separation From Flue Gas, Pipeline Transportation, and Sequestration in Coal,” Idaho National Laboratory, Idaho Falls, ID, Technical Report No. INL/EXT-08-13816.
Leu,
S.-Y.
,
Libra,
J. A.
, and
Stenstrom,
M. K.
, 2010, “
Monitoring Off-Gas O
2/CO
2 to Predict Nitrification Performance in Activated Sludge Processes,” Water Res.,
44(11), pp. 3434–3444.
[CrossRef] [PubMed]
Pelaez,
M.
,
Nolan,
N. T.
,
Pillai,
S. C.
,
Seery,
M. K.
,
Falaras,
P.
,
Kontos,
A. G.
,
Dunlop,
P. S.
,
Hamilton,
J. W.
,
Byrne,
J.
,
O'Shea,
K.
,
Entezari,
M. H.
, and
Dionysiou,
D. D.
, 2012, “
A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications,” Appl. Catal., B,
125, pp. 331–349.
[CrossRef]
Lazar,
M.
,
Varghese,
S.
, and
Nair,
S.
, 2012, “
Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates,” Catalysts,
2(4), pp. 572–601.
[CrossRef]Co-LaN, 2013, “The CAPE-OPEN Laboratories Network (CO-LaN),” 2013, Co-LaN Laboratories Network, Paris,
http://www.colan.org/
Bussche,
K. V.
, and
Froment,
G.
, 1996, “
A Steady-State Kinetic Model for Methanol Synthesis and the Water Gas Shift Reaction on a Commercial Cu/ZnO/Al
2O
3Catalyst,” J. Catal.,
161(1), pp. 1–10.
[CrossRef]
Askgaard,
T. S.
,
Norskov,
J. K.
,
Ovesen,
C. V.
, and
Stoltze,
P.
, 1995, “
A Kinetic Model of Methanol Synthesis,” J. Catal.,
156(2), pp. 229–242.
[CrossRef]
Skrzypek,
J.
,
Lachowska,
M.
, and
Moroz,
H.
, 1991, “
Kinetics of Methanol Synthesis Over Commercial Copper/Zinc Oxide/Alumina Catalysts,” Chem. Eng. Sci.,
46(11), pp. 2809–2813.
[CrossRef]
Lovik,
I.
, 2001, “
Modelling, Estimation and Optimization of the Methanol Synthesis With Catalyst Deactivation,” Ph.D. thesis, Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
van Baten,
J.
, and
Baur,
R.
, 2011, “Cape Open to Cape Open Simulator Environment (COCO),” accessed Feb. 10, 2015,
www.cocosimulator.org
Chauvel,
A.
, and
Lefebvre,
G.
, 1989, Petrochemical Processes: Synthesis Gas Derivatives and Major Hydrocarbons,
Institute Francais du Petrol Publications,
Paris.
LeBlanc,
J.
,
Schneider,
R. V., III
,
Strait,
R. B.
, 1994, “
Production of Methanol,” Methanol Production and Use Chemical Industries, Vol. 57, W.-H. Cheng and H. H. Kung, eds., Marcel Dekker, Inc, New York.
Kung,
H. H.
, 1992, “
Deactivation of Methanol Synthesis Catalysts-A Review,” Catal. Today,
11(4), pp. 443–453.
[CrossRef]
Stolaroff,
J. K.
,
Keith,
D. W.
, and
Lowry,
G. V.
, 2008, “
Carbon Dioxide Capture From Atmospheric Air Using Sodium Hydroxide Spray,” Environ. Sci. Technol.,
42(8), pp. 2728–2735.
[CrossRef] [PubMed]
Zeman,
F.
, 2007, “
Energy and Material Balance of CO
2 Capture From Ambient Air,” Environ. Sci. Technol.,
41(21), pp. 7558–7563.
[CrossRef] [PubMed]
Wang,
T.
,
Lackner,
K. S.
, and
Wright,
A.
, 2011, “
Moisture Swing Sorbent for Carbon Dioxide Capture From Ambient Air,” Environ. Sci. Technol.,
45(15), pp. 6670–6675.
[CrossRef] [PubMed]
Cengel,
Y.
, and
Boles,
M. A.
, 2006, Thermodynamics: An Engineering Approach, SI Version, 5th ed.,
McGraw-Hill Education, Boston.
Lackner,
K. S.
,
Dahlgren,
E.
,
Graves,
C.
,
Meinrenken,
C.
, and
Socci,
T.
, 2010, “
Closing the Carbon Cycle: Liquid Fuels From Air, Water and Sunshine,” Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, New York.
Lackner,
K.
, 2009, “
Capture of Carbon Dioxide From Ambient Air,” Eur. Phys. J. Spec. Top.,
176(1), pp. 93–106.
[CrossRef]
Ivy,
J.
, 2004, “
Summary of Electrolytic Hydrogen Production: Milestone Completion,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/MP-560-36734.