Research Papers

Day-Ahead Solar Irradiance Forecasting in a Tropical Environment

[+] Author and Article Information
Aloysius W. Aryaputera

Solar Energy Research Institute of Singapore,
National University of Singapore,
Block E3A, #06-01,
7 Engineering Drive 1,
Singapore 117574, Singapore;
Department of Electrical
and Computer Engineering,
National University of Singapore,
4 Engineering Drive 3,
Singapore 117583, Singapore
e-mail: a0045599@u.nus.edu

Dazhi Yang

Singapore Institute of Manufacturing
Technology (SIMTech),
Agency for Science, Technology
and Research (A*STAR),
71 Nanyang Drive,
Singapore 638075, Singapore

Wilfred M. Walsh

Solar Energy Research Institute of Singapore,
National University of Singapore,
Block E3A, #06-01,
7 Engineering Drive 1,
Singapore 117574, Singapore

1Corresponding author.

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received November 12, 2014; final manuscript received March 23, 2015; published online July 27, 2015. Assoc. Editor: Philippe Blanc.

J. Sol. Energy Eng 137(5), 051009 (Jul 27, 2015) (7 pages) Paper No: SOL-14-1336; doi: 10.1115/1.4030231 History: Received November 12, 2014

Day-ahead solar irradiance forecasting is carried out using data from a tropical environment, Singapore. The performance of the weather research and forecasting (WRF) model is evaluated. We explore various combinations of physics configuration setups in the WRF model and propose a setup for the tropical regions. The WRF model is benchmarked using persistence and two seasonal time series models, namely, the exponential smoothing (ETS) and seasonal autoregressive integrated moving average (SARIMA) models. It is shown that the WRF model outperforms the SARIMA model and achieves accuracies comparable with persistence and ETS models. Persistence, ETS, and WRF models have relative root mean square errors (rRMSE) of about 55–57%. Furthermore, we find that by combining the forecasting outputs of WRF and ETS models, errors can be reduced to 49%.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Inman, R. H. , Pedro, H. T. C. , and Coimbra, C. F. M. , 2013, “Solar Forecasting Methods for Renewable Energy Integration,” Prog. Energy Combust. Sci., 39(6), pp. 535–576. [CrossRef]
Yang, D. , 2014, “Solar Irradiance Modeling and Forecasting Using Novel Statistical Techniques,” Ph.D. thesis, National University of Singapore, Singapore.
Lara-Fanego, V. , Ruiz-Arias, J. A. , Pozo-Vázquez, D. , Santos-Alamillos, F. J. , and Tovar-Pescador, J. , 2012, “Evaluation of the WRF Model Solar Irradiance Forecasts in Andalusia (Southern Spain),” Sol. Energy, 86(8), pp. 2200–2217. [CrossRef]
Bjerknes, V. , 1904, “The Problem of Weather Prediction, Considered From the Viewpoints of Mechanics and Physics (Das Problem der Wettervorhersage, Betrachtet vom Standpunkte der Mechanik und der Physik),” Meteorol. Z., 18(6), pp. 663–667. [CrossRef]
Zamora, R. J. , Dutton, E. G. , Trainer, M. , McKeen, S. A. , Wilczak, J. M. , and Hou, Y.-T. , 2005, “The Accuracy of Solar Irradiance Calculations Used in Mesoscale Numerical Weather Prediction,” Mon. Weather Rev., 133(4), pp. 783–792. [CrossRef]
Ruiz-Arias, J. A. , Pozo-Vázquez, D. , Sánchez-Sánchez, N. , Montávez, J. P. , Hayas-Barru, A. , and Tovar-Pescador, J. , 2008, “Evaluation of Two MM5-PBL Parameterization for Solar Radiation and Temperature Estimation in the South-Eastern Area of the Iberian Peninsula,” Nuovo Cimento, 31(5–6), pp. 825–842.
Lorenz, E. , Hurka, J. , Heinemann, D. , and Beyer, H. G. , 2009, “Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2(1), pp. 2–10. [CrossRef]
Mathiesen, P. , and Kleissl, J. , 2011, “Evaluation of Numerical Weather Prediction for Intra-Day Solar Forecasting in the Continental United States,” Sol. Energy, 85(5), pp. 967–977. [CrossRef]
Diagne, M. , David, M. , Boland, J. , Schmutz, N. , and Lauret, P. , 2014, “Post-Processing of Solar Irradiance Forecasts From WRF Model at Reunion Island,” Sol. Energy, 105, pp. 99–108. [CrossRef]
Cornaro, C. , Bucci, F. , Pierro, M. , Del Frate, F. , Peronaci, S. , and Taravat, A. , 2015, “Twenty-Four Hour Solar Irradiance Forecast Based on Neural Networks and Numerical Weather Prediction,” ASME J. Sol. Energy Eng., 137(3), p. 031011. [CrossRef]
He, S. , Raghavan, S. V. , Nguyen, N. S. , and Liong, S.-Y. , 2013, “Ensemble Rainfall Forecasting With Numerical Weather Prediction and Radar-Based Nowcasting Models,” Hydrol. Processes, 27(11), pp. 1560–1571. [CrossRef]
Tursilowati, L. , Sumantyo, J. T. S. , Kuze, H. , and Adiningsih, E. S. , 2011, “The Integrated WRF Urban Modeling System and Its Application to Monitoring Urban Heat Island in Jakarta, Indonesia,” J. Urban Environ. Eng., 6(1), pp. 1–9. [CrossRef]
Vaid, B. H. , 2013, “Numerical Simulations and Analysis of June 16, 2010 Heavy Rainfall Event Over Singapore Using the WRFV3 Model,” Int. J. Atmos. Sci., 2013, p. 825395.
Li, X.-X. , Koh, T.-Y. , Entekhabi, D. , Roth, M. , Panda, J. , and Norford, L. K. , 2013, “A Multi-Resolution Ensemble Study of a Tropical Urban Environment and Its Interactions With the Background Regional Atmosphere,” J. Geophys. Res. Atmos., 118(17), pp. 9804–9818. [CrossRef]
Laux, P. , Phan, V. T. , Lorenz, C. , Thuc, T. , Ribbe, L. , and Kunstmann, H. , 2013, “Setting up Regional Climate Simulations for Southeast Asia,” High Performance Computing in Science and Engineering ‘12, W. E. Nagel , D. H. Kroner , and M. M. Resch , eds., Springer, Berlin, pp. 391–406.
Chotamonsak, C. , Salathé, E. P. , Kreasuwan, J. , Chantara, S. , and Siriwitayakorn, K. , 2011, “Projected Climate Change Over Southeast Asia Simulated Using a WRF Regional Climate Model,” Atmos. Sci. Lett., 12(2), pp. 213–219. [CrossRef]
Skamarock, W. , Klemp, J. B. , Dudhia, J. , Gill, D. O. , Barker, D. , Duda, M. G. , Huang, X. Y. , and Wang, W. , 2008, “A Description of the Advanced Research WRF Version 3,” National Center for Atmospheric Research, Boulder, CO, Technical Report No. NCAR/TN-475+STR.
Perez, R. , Lorenz, E. , Pelland, S. , Beauharnois, M. , Van Knowe, G. , Hemker, K., Jr. , Heinemann, D. , Remund, J. , Muller, S. C. , Traunmuller, W. , Steinmauer, G. , Pozo, D. , Ruiz-Arias, J. A. , Lara-Fanego, V. , Ramirez-Santigosa, L. , Gaston-Romero, M. , and Pomares, L. M. , 2013, “Comparison of Numerical Weather Prediction Solar Irradiance Forecasts in the US, Canada and Europe,” Sol. Energy, 94, pp. 305–326. [CrossRef]
Yang, D. , Sharma, V. , Ye, Z. , Lim, L. I. , Zhao, L. , and Aryaputera, A. W. , 2015, “Forecasting of Global Horizontal Irradiance by Exponential Smoothing, Using Decompositions,” Energy, 81, pp. 111–119. [CrossRef]
Yang, D. , Dong, Z. , Reindl, T. , Jirutitijaroen, P. , and Walsh, W. M. , 2014, “Solar Irradiance Forecasting Using Spatio-Temporal Empirical Kriging and Vector Autoregressive Models With Parameter Shrinkage,” Sol. Energy, 103, pp. 550–562. [CrossRef]
Dong, Z. , Yang, D. , Reindl, T. , and Walsh, W. M. , 2014, “Satellite Image Analysis and a Hybrid ESSS/ANN Model to Forecast Solar Irradiance in the Tropics,” Energy Conv. Manage., 79, pp. 66–73. [CrossRef]
Meteorological Services Division, 2009, “WEATHERWise—Singapore,” National Environment Agency, Singapore, http://www.nea.gov.sg/docs/default-source/training-knowledge-hub/guidebook-on-climate-of-singapore.pdf?sfvrsn=0)p
Hong, S.-Y. , and Lim, J.-O. J. , 2006, “The WRF Single-Moment 6-Class Microphysics Scheme (WSM6),” J. Korean Meteorol. Soc., 42(2), pp. 129–151.
Mlawer, E. J. , Taubman, S. J. , Brown, P. D. , Iacono, M. J. , and Clough, S. A. , 1997, “Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-K Model for the Longwave,” J. Geophys. Res. Atmos., 102(D14), pp. 16663–16682. [CrossRef]
Dudhia, J. , 1989, “Numerical Study of Convection Observed During the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model,” J. Atmos. Sci., 46(20), pp. 3077–3107. [CrossRef]
Paulson, C. A. , 1970, “The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer,” J. Appl. Meteorol., 9(6), pp. 857–861. [CrossRef]
Chen, F. , 2007, “The Noah Land Surface Model in WRF: A Short Tutorial,” NCAR, LSM Group Meeting, Apr. 17, http://www.atmos.illinois.edu/∼snesbitt/ATMS597R/notes/noahLSM-tutorial.pdf
Hong, S.-Y. , Noh, Y. , and Dudhia, J. , 2006, “A New Vertical Diffusion Package With an Explicit Treatment of Entrainment Processes,” Mon. Weather Rev., 134(9), pp. 2318–2341. [CrossRef]
Grell, G. A. , and Freitas, S. R. , 2013, “A Scale and Aerosol Aware Stochastic Convective Parameterization for Weather and Air Quality Modeling,” Atmos. Chem. Phys. Discuss., 13(9), pp. 23845–23893. [CrossRef]
Dudhia, J. , 2014, “Overview of WRF Physics,” University Corporation for Atmospheric Research, Boulder, CO, http://www2.mmm.ucar.edu/wrf/users/tutorial/201401/Physics_full.pdf
Gregory, K. J. , Simmons, I. G. , Brazel, A. J. , Day, J. W. , Keller, E. A. , Sylvester, A. G. , and Yáñez, A. , 2009, Environmental Sciences, SAGE, London.
Hummon, M. , 2014, “Solar Power Data for Integration Studies,” National Renewable Energy Laboratory, Golden, CO, http://www.nrel.gov/electricity/transmission/solar_integration_methodology.html?print
Hong, S.-Y. , and Pan, H.-L. , 1996, “Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model,” Mon. Weather Rev., 124(10), pp. 3233–3239. [CrossRef]
Grell, E. , Grell, G. , and Bao, J.-W. , 2013, “Experimenting With a Convective Parameterization Scheme Suitable for High-Resolution Mesoscale Models in Tropical Cyclone Simulations,” European Geosciences Union General Assembly (EGU), Vienna, Austria, Apr. 7–12.
Wang, W. , Bruyére, C. , Duda, M. , Dudhia, J. , Gill, D. , Kavulich, M. , Keene, K. , Lin, H.-C. , Michalakes, J. , Rizvi, S. , Zhang, X. , Beezley, J. D. , Coen, J. L. , Mandel, J. , Chuang, H.-Y. , McKee, N. , Slovacek, T. , and Wolff, J. , 2014, “ARW Version 3 Modeling System User's Guide January 2014,” National Center for Atmospheric Research, Boulder, CO, http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.5/ARWUsersGuideV3.pdf
Hyndman, R. J. , Koehler, A. B. , Snyder, R. D. , and Grose, S. , 2002, “A State Space Framework for Automatic Forecasting Using Exponential Smoothing Methods,” Int. J. Forecasting, 18(3), pp. 439–454. [CrossRef]
Hyndman, R. J. , Koehler, A. B. , Ord, J. K. , and Snyder, R. D. , 2008, Forecasting With Exponential Smoothing, Springer, Berlin.
Box, G. E. P. , Jenkins, G. M. , and Reinsel, G. C. , 1994, Time Series Analysis: Forecasting and Control, Prentice-Hall, Englewood Cliffs, NJ.
Ricci, V. , 2005, “R Functions for Regression Analysis,” http://cran.r-project.org/doc/contrib/Ricci-refcard-regression.pdf
Perez, R. , Ineichen, P. , Seals, R. , and Zelenka, A. , 1990, “Making Full Use of the Clearness Index for Parameterizing Hourly Insolation Conditions,” Sol. Energy, 45(2), pp. 111–114. [CrossRef]
Beyer, H. G. , Martinez, J. P. , Suri, M. , Martinez, J. L. , Lorenz, E. , Müller, S. C. , Hoyer-Klick, C. , and Ineichen, P. , 2009, “Report on Benchmarking of Radiation Products,” Management and Exploitation of Solar Resource Knowledge, Technical Report No. 038665.
Yang, D. , Walsh, W. M. , and Jirutitijaroen, P. , 2014, “Estimation and Applications of Clear Sky Global Horizontal Irradiance at the Equator,” ASME J. Sol. Energy Eng., 136(3), p. 034505. [CrossRef]
Rubel, F. , and Kottek, M. , 2010, “Observed and Projected Climate Shifts 1901–2100 Depicted by World Maps of the Köppen–Geiger Climate Classification,” Meteorol. Z., 19(2), pp. 135–141. [CrossRef]
Laing, A. , and Evans, J.-L. , 2011, Introduction to Tropical Meteorology, University Corporation for Atmospheric Research, Boulder, CO.


Grahic Jump Location
Fig. 1

Map of Singapore (left) and WRF simulation domain (right)

Grahic Jump Location
Fig. 2

Interactions of WRF parameterizations (adopted from Ref. [30])

Grahic Jump Location
Fig. 3

Comparison between rRMSE and simulation grid resolutions

Grahic Jump Location
Fig. 4

Comparison of annual (selected 60 days) rRMSE values of different forecasting methods in different sky conditions



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In