0
Research Papers

Performance Evaluation of a New Type of Combined Photovoltaic–Thermal Solar Collector

[+] Author and Article Information
Gianpiero Colangelo

Dipartimento di Ingegneria dell'Innovazione,
Università del Salento,
Via per Arnesano,
Lecce 73100, Italy
e-mail: gianpiero.colangelo@unisalento.it

Danilo Romano

Dipartimento di Ingegneria dell'Innovazione,
Università del Salento,
Via per Arnesano,
Lecce 73100, Italy
e-mail: danilo.romano@unisalento.it

Giuseppe Marco Tina

Dipartimento di Ingegneria
Elettrica Elettronica e dei Sistemi,
Università di Catania,
Viale Andrea Doria 6,
Catania 95125, Italy
e-mail: gtina@diees.unict.it

1Corresponding author.

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received October 9, 2014; final manuscript received May 25, 2015; published online June 16, 2015. Editor: Robert F. Boehm.

J. Sol. Energy Eng 137(4), 041012 (Aug 01, 2015) (12 pages) Paper No: SOL-14-1288; doi: 10.1115/1.4030727 History: Received October 09, 2014; Revised May 25, 2015; Online June 16, 2015

A thermal analysis of a new photovoltaic–thermal (PV–T) solar panel design, called thermal electric solar panel integration (TESPI), has been performed using radtherm thermoanalitics software. Combinations of different water flow rates and different panel configurations have been analyzed to determine which one produces best performance in terms of optimal PV efficiency and available thermal energy. Higher total panel efficiencies (thermal and electrical) were achieved in configurations utilizing the highest water flow rates, independently from the chosen configuration. However, high water flow rates translated into minimal net temperature differences between the PV/T panel inlet and outlet.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Colangelo, G., Favale, E., de Risi, A., and Laforgia, D., 2012, “Results of Experimental Investigations on the Heat Conductivity of Nanofluids Based on Diathermic Oil for High Temperature Applications,” Appl. Energy, 97, pp. 828–833. [CrossRef]
Colangelo, G., Favale, E., de Risi, A., and Laforgia, D., 2013, “A New Solution for Reduced Sedimentation Flat Panel Solar Thermal Collector Using Nanofluids,” Appl. Energy, 111, pp. 80–93. [CrossRef]
Colangelo, G., de Risi, A., and Laforgia, D., 2006, “Experimental Study of a Burner With High Temperature Heat Recovery System for TPV Applications,” Energy Convers. Manage., 47(9–10), pp. 1192–1206. [CrossRef]
Chow, T. T., 2010, “A Review on Photovoltaic/Thermal Hybrid Solar Technology,” Appl. Energy, 87(2), pp. 365–379. [CrossRef]
Zondag, H. A., de Vries, D. W., Van Helden, W. G. J., Van Zolingen, R. J. C., and Van Steenhoven, A. A., 2002, “The Thermal and Electrical Yield of a PV–Thermal Collector,” Sol. Energy, 72(2), pp. 113–128. [CrossRef]
de Vries, D. W., 1998, “Design of a Photovoltaic–Thermal Combi-Panel,” Ph.D. thesis, Eindhoven Technical University, pp. 8–12.
Kalogirou, S. A., 2001, “Use of trnsys for Modeling and Simulation of a Hybrid PV–Thermal Solar System for Cyprus,” Renewable Energy, 23(2), pp. 247–260. [CrossRef]
Kalogirou, S. A., and Tripanagnostopoulos, Y., 2006, “Hybrid PV/T Solar Systems for Domestic Hot Water and Electricity Production,” Energy Convers. Manage., 47(18–19), pp. 3368–3382. [CrossRef]
Vokas, G., Christandonis, N., and Skittides, F., 2006, “Hybrid Photovoltaic-Thermal Systems for Domestic Heating and Cooling—A Theoretical Approach,” Sol. Energy, 80(5), pp. 607–615. [CrossRef]
Chow, T. T., Pei, G., Fong, K. F., Lin, Z., Chan, A. L. S., and Ji, J., 2009, “Energy and Exergy Analysis of Photovoltaic-Thermal Collector With and Without Glass Cover,” Appl. Energy, 86(3), pp. 310–316. [CrossRef]
Dubey, S., and Tiwari, G. N., 2009, “Analysis of PV/T Flat Plate Water Collectors Connected in Series,” Sol. Energy, 83(9), pp. 1485–1498. [CrossRef]
Rosa-Clot, M., Rosa-Clot, P., and Tina, G. M., 2011, “TESPI: Thermal Electric Solar Panel Integration,” Sol. Energy, 85(10), pp. 2433–2442. [CrossRef]
Zondag, H. A., De Vries, D. W., Van Helden, W. G. J., Van Zolingen, R. J. C., and Van Steenhoven, A. A., 2002, “The Thermal and Electrical Yield of a PV-Thermal Collector,” Sol. Energy, 72(2), pp. 113–128. [CrossRef]
Hottel, H., and Woertz, B., 1942, “The Performance of Flat Plate Solar Heat Collector,” Trans. ASME, 64, pp. 91–104.
Hottel, H., and Whillier, A., 1955, “Evaluation of Flat-Plate Solar Collector Performance,” Transactions of the Conference on the Use of Solar Energy Thermal Processes, Tucson, AZ, pp. 74–104.
Bliss, J., 1959, “The Derivations of Several “Plate-Efficiency Factors” Useful in the Design of Flate-Plate Heat Collectors,” Sol. Energy, 3(4), pp. 55–64. [CrossRef]
Duffie, J., and Beckman, W., 1991, Solar Engineering of Thermal Processes, 2nd ed., Wiley, New York.
Close, D., 1967, “A Design Approach for Solar Process,” Sol. Energy, 11(12), pp. 112–122. [CrossRef]
Wijeysundera, N. E., 1978, “Comparison of Transient Heat Transfer Models for Flat Plate Collectors,” Sol. Energy, 21(6), pp. 517–521. [CrossRef]
Morrison, G. L., and Ranatunga, D. B. J., 1980, “Transient Response of Thermosyphon Solar Collectors,” Sol. Energy, 24(1), pp. 55–61. [CrossRef]
Fraisse, G., Plantier, C., and Achard, G., 2003, “Development and Experimental Validation of a Detailed Flat-Plate Solar Collector Model,” 5th French and European trnsys User Meeting, France, pp. 1–14.
Pierrick, H., Menezo, C., Gaillard, L., and Dupeyrat, P., 2014, “Dynamic Numerical Model of a High Efficiency PV–T Collector Integrated Into a Domestic Hot Water System,” Sol. Energy, 111, pp. 68–81. [CrossRef]
Klein, S., Duffie, J., and Beckman, W., 1974, “Transient Considerations of Flat-Plate Solar Collectors,” ASME J. Eng. Power, 96A(2), pp. 109–113. [CrossRef]
Kamminga, W., 1985, “The Approximate Temperatures Within a Flat-Plate Solar Collector Under Transient Conditions,” Int. J. Heat Mass Transfer, 28(2), pp. 433–440. [CrossRef]
Butcher, J., 1987, The Numerical Analysis of Ordinary Differential Equations, Wiley, New York.
Oliva, A., Costa, M., and Pérez Segarra, C., 1991, “Numerical Simulation of Solar Collectors: The Effect of Non-Uniformity and Nonsteady State of Boundary Conditions,” Sol. Energy, 47(5), pp. 359–373. [CrossRef]
Villar, N. M., Lòpez, J. M. C., Muñoz, F. D., Garcìa, E. R., and Andreas, A. C., 2009, “Numerical 3D Heat Flux Simulations on Flat Plate Solar Collectors,” Sol. Energy, 83(7), pp. 1086–1092. [CrossRef]
Wirz, M., Roesle, M., and Steinfeld, A., 2012, “Three-Dimensional Optical and Thermal Numerical Model of Solar Tubular Receivers in Parabolic Trough Concentrators,” ASME J. Sol. Energy Eng., 134(4), p. 041012. [CrossRef]
Skoplaki, E., and Palyvos, J., 2009, “On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations,” Sol. Energy, 83(5), pp. 614–624. [CrossRef]
Jones, A. D., and Underwood, C. P., 2001, “A Thermal Model for Photovoltaic Systems,” Sol. Energy, 70(4), pp. 349–359. [CrossRef]
Tina, G. M., and Scrofani, S., 2008, “Electrical and Thermal Model for PV Module Temperature Evaluation,” The 14th IEEE Mediterranean Electrotechnical Conference, Ajaccio, France, May 5–7, pp. 585–590. [CrossRef]
Tina, G. M., and Abate, R., 2008, “Experimental Verification of Thermal Behavior of Photovoltaic Modules,” The 14th IEEE Mediterranean Electrotechnical Conference, Ajaccio, France, May 5–7, pp. 579–584. [CrossRef]
Aste, N., Del Pero, C., and Leonforte, F., 2012, “Thermal-Electrical Optimization of the Configuration a Liquid PVT Collector,” Energy Procedia, 30, pp. 1–7. [CrossRef]
Bergene, T., and Lovvik, O. M., 1995, “Model Calculations on a Flat-Plate Solar Heat Collector With Integrated Solar Cells,” Sol. Energy, 55(6), pp. 453–462. [CrossRef]
Zondag, H. A., de Vries, D. W., van Helden, W. G. J., van Zolingen, R. J. C., and van Steenhoven, A. A., 2001, “The Thermal and Electrical Yield of a PV-Thermal Collector,” Sol. Energy, 72(2), pp. 113–128. [CrossRef]
Zondag, H. A., de Vries, D. W., van Helden, W. G. J., van Zolingen, R. J. C., and van Steenhoven, A. A., 2003, “The Yield of Different Combined PV–thermal Collector Designs,” Sol. Energy, 74(3), pp. 253–269. [CrossRef]
Assoa, Y. B., Menezo, C., Fraisse, G., Yezou, R., and Brau, J., 2007, “Study of a New Concept of Photovoltaic–Thermal Hybrid Collector,” Sol. Energy, 81(9), pp. 1132–1143. [CrossRef]
Chow, T. T., 2003, “Performance Analysis of Photovoltaic–Thermal Collector by Explicit Dynamic Model,” Sol. Energy, 75(2), pp. 143–152. [CrossRef]
Xu, X., Meyers, M. M., Sammakia, B. G., and Murray, B. T., 2012, “Thermal Modeling and Life Prediction of Water-Cooled Hybrid Concentrating Photovoltaic/Thermal Collectors,” ASME J. Sol. Energy Eng., 135(1), p. 011010. [CrossRef]
Fontenault, B. J., and Gutierrez-Miravete, E., 2002, “Modeling a Combined Photovoltaic-Thermal Solar Panel,” Comsol Conference, Boston, MA, pp. 1–8.
Lanzafame, R., Nachtmann, S., Rosa-Clot, M., Rosa-Clot, P., Scandura, P. F., Taddei, S., and Tina, G. M., 2010, “Field Experience With Performances Evaluation of a Single-Crystalline Photovoltaic Panel in an Underwater Environment,” IEEE Trans. Ind. Electron., 57(7), pp. 2492–2498. [CrossRef]
Tina, G. M., Marletta, G., and Sardella, S., 2012, “Multi-Layer Thermal Models of PV Modules for Monitoring Applications,” 38th IEEE Photovoltaic Specialists Conference (PVSC), Austin, TX, June 3–8, p. 002947. [CrossRef]
“ Thermoanalytics,” www.thermoanalytics.com
Fadugba, S. E., Edogbanya, O. H., and Zelibe, S. C., 2013, “Crank Nicolson Method for Solving Parabolic Partial Differential Equations,” IJA2M, 1(3), pp. 8–23.
Braga Jùnior, W., Macêdo, W. N., and Pinho, J. T., 2013, “Analysis of Characteristic Parameters of Commercial Photovoltaic Modules,” ISES Solar World Congress, pp. 4–13.
Cengel, Y. A., 2009, Introduction to Thermodynamics and Heat Transfer, Vol. 12, McGraw-Hill Higher Education, pp. 542–543.
Aste, N., Del Pero, C., and Leonforte., F., 2014, “Water Flat Plate PV–Thermal Collectors: A Review,” Sol. Energy, 102, pp. 98–115. [CrossRef]
Tina, G. M., and Celsa, M., 2015, “matlab/simulink Model of Photovoltaic Modules/Strings Under Uneven Distribution of Irradiance and Temperature,” IREC Conference, Sousse, Tunisia, pp. 1–6.

Figures

Grahic Jump Location
Fig. 1

Exploded view of TESPI panel

Grahic Jump Location
Fig. 2

TESPI panel configurations: (a) vertical and (b) horizontal

Grahic Jump Location
Fig. 3

TESPI panel—cross view section

Grahic Jump Location
Fig. 4

Scheme of the layers of TESPI and main energy fluxes

Grahic Jump Location
Fig. 5

Thermal model validation

Grahic Jump Location
Fig. 6

Thermal simulation summer solstice—outlet temperature

Grahic Jump Location
Fig. 7

Thermal simulation summer solstice—PV cells temperature

Grahic Jump Location
Fig. 8

Thermal simulation summer solstice—temperature profile of TESPI

Grahic Jump Location
Fig. 9

Thermal simulation autumnal equinox—outlet temperature

Grahic Jump Location
Fig. 10

Thermal simulation autumnal equinox—PV cells temperature

Grahic Jump Location
Fig. 11

Thermal simulation winter solstice—outlet temperature

Grahic Jump Location
Fig. 12

Thermal simulation winter solstice—PV cells temperature

Grahic Jump Location
Fig. 13

Thermal simulation spring equinox—outlet temperature

Grahic Jump Location
Fig. 14

Thermal simulation spring equinox—PV cells temperature

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In