Technical Brief

A Comparative Study on the Optimization of a Ternary P3HT:PCBM:Pentacene Active Layer in Bulk Heterojunction Organic Solar Cells

[+] Author and Article Information
Gerson dos Santos

Laboratório de Microeletrônica,
Departamento de Engenharia de Sistemas Eletrônicos,
Escola Politécnica da Universidade de São Paulo,
Avenida Prof. Luciano Gualberto,
Travessa 3, No. 380, Butantã,
São Paulo, SP CEP 05508-900, Brazil
e-mail: gsantos@lme.usp.br

Marco Roberto Cavallari

Laboratório de Microeletrônica,
Departamento de Engenharia de Sistemas Eletrônicos,
Escola Politécnica da Universidade de São Paulo,
Avenida Prof. Luciano Gualberto,
Travessa 3, No. 380, Butantã,
São Paulo, SP CEP 05508-900, Brazil
e-mail: rcavallari@lme.usp.br

Fernando Josepetti Fonseca

Laboratório de Microeletrônica,
Departamento de Engenharia de Sistemas Eletrônicos,
Escola Politécnica da Universidade de São Paulo,
Avenida Prof. Luciano Gualberto,
Travessa 3, No. 380, Butantã,
São Paulo, SP CEP 05508-900, Brazil
e-mail: fernando.fonseca@poli.usp.br

1Corresponding author.

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received December 4, 2014; final manuscript received March 26, 2015; published online April 17, 2015. Editor: Robert F. Boehm.

J. Sol. Energy Eng 137(4), 044502 (Aug 01, 2015) (4 pages) Paper No: SOL-14-1364; doi: 10.1115/1.4030315 History: Received December 04, 2014; Revised March 26, 2015; Online April 17, 2015

This work shows a comparative and processing optimization study of the recent ternary bulk heterojunction (BHJ) of P3HT: PCBM:pentacene (1:0.9:0.1 wt. ratio) against the well-known active layer of poly(3-hexylthiophene) (P3HT) blended to phenyl C61 butyric acid methyl ester (PCBM) (1:1 wt. ratio). Initially, monochlorobenzene (MCB) was compared and later replaced by dichlorobenzene (DCB) as active layer solvent. The following optimization step related to thermal annealing effects on solar cell power conversion efficiency (PCE) and fill-factor (FF). Ternary junction slow drying at room temperature without a postproduction thermal treatment proved to be the most suitable to improve BHJ morphology at nanoscale. Finally, ternary composite mass concentration ranged from 20 to 60 mg/ml in DCB to achieve an efficiency near 3% at 40 mg/ml. An observed improvement of at least 15% in photovoltaic efficiency and a practically constant open-circuit voltage (i.e., just 1.2% variation) compared to the already-established P3HT:PCBM blend corroborates the role of pentacene in the active layer to balance mobility from both charge carrier types.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Takayuki, K., Hirokazu, S., Mitsuhito, K., Takahiro, Y., and Kohshin, T., 2010, “Inverted Bulk-Heterojunction Organic Solar Cell Using Chemical Bath Deposited Titanium Oxide as Electron Collection Layer,” Org. Electron., 11(6), pp. 1136–1140. http://www.sciencedirect.com/science/article/pii/S1566119910001254
Scharber, M. C., and Sariciftci, N. S., 2013, “Efficiency of Bulk-Heterojunction Organic Solar Cells,” Prog. Polym. Sci., 38(12), pp. 1929–1940. [CrossRef] [PubMed]
Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., and Yang, Y., 2005, “High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends,” Nat. Mater., 4, pp. 864–868. [CrossRef]
Irwin, M. D., Buchholz, D. B., Hains, A. W., Chang, R. P. H., and Marks, T. J., 2008, “P-Type Semiconducting Nickel Oxide as an Efficiency-Enhancing Anode Interfacial Layer in Polymer Bulk-Heterojunction Solar Cells,” PNAS, 105(8), pp. 2783–2787. [CrossRef]
Miller, S., Fanchini, G., Lin, Y.-Y., Li, C., Chen, C.-W., Su, W.-F., and Chhowalla, M., 2008, “Investigation of Nanoscale Morphological Changes in Organic Photovoltaics During Solvent Vapor Annealing,” J. Mater. Chem., 18(3), pp. 306–312. [CrossRef]
Li, G., Yao, Y., Yang, H., Shrotriya, V., Yang, G., and Yang, Y., 2007, “Solvent Annealing Effect in Polymer Solar Cells Based on Poly(3-Hexylthiophene) and Methanofullerenes,” Adv. Funct. Mater., 17(10), pp. 1636–1644. [CrossRef]
Reyes-Reyes, M., Kim, K., and Carroll, D., 2005, “High-Efficiency Photovoltaic Devices Based on Annealed Poly(3-Hexylthiophene) and 1-(3-Methoxycarbonyl)-Propyl-1-Phenyl-(6,6)C61 Blends,” Appl. Phys. Lett., 87(8), p. 083506. [CrossRef]
Kim, Y., Choulis, S., Nelson, J., Bradley, D., Cook, S., and Durrant, J., 2005, “Device Annealing Effect in Organic Solar Cells With Blends of Regioregular Poly(3-Hexylthiophene) and Soluble Fullerene,” Appl. Phys. Lett., 86(6), p. 063502. [CrossRef]
Inoue, K., Ulbricht, R., Madakasira, P., Sampson, W., Lee, S., Gutierrez, J., Ferraris, J., and Zakhidov, A., 2005, “Temperature and Time Dependence of Heat Treatment of RR-P3HT/PCBM Solar Cell,” Synth. Met., 154(1–3), pp. 41–44. [CrossRef]
Kim, K., Liu, J., Namboothiry, M., and Carroll, D. L., 2007, “Roles of Donor and Acceptor Nanodomains in 6% Efficient Thermally Annealed Polymer Photovoltaics,” Appl. Phys. Lett., 90(16), p. 163511. [CrossRef]
Yang, L., Yan, L., and You, W., 2013, “Organic Solar Cells Beyond One Pair of Donor–Acceptor: Ternary Blends and More,” J. Phys. Chem. Lett., 4(11), pp. 1802–1810. [CrossRef]
Lee, C. T., and Lee, C. H., 2013, “Conversion Efficiency Improvement Mechanisms of Polymer Solar Cells by Balance Electron-Hole Mobility Blended P3HT:PCBM:Pentacene Active Layer,” Org. Electron., 14(8), pp. 2046–2050. [CrossRef]
Shaheen, S. E., Brabec, C. J., Sariciftci, N. S., Padinger, F., Fromherz, T., and Hummelen, J. C., 2001, “Fabrication of Bulk Heterojunction Plastic Solar Cells by Screen Printing,” Appl. Phys. Lett., 79(18), pp. 2996–2998. [CrossRef]
Dennler, G., Scharber, M. C., and Brabec, C. J., 2009, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater., 21(13), pp. 1323–1338. [CrossRef]
Servaites, J., Ratner, M., and Marks, T., 2011, “Organic Solar Cells: A New Look at Traditional Models,” Energy Environ. Sci., 4(11), pp. 4410–4422. [CrossRef]
Ma, W., Yang, C., Gong, X., Lee, K., and Heeger, A., 2005, “Thermally Stable, Efficient Polymer Solar Cells With Nanoscale Control of the Interpenetrating Network Morphology,” Adv. Funct. Mater., 15(10), pp. 1617–1622. [CrossRef]
Al-Ibrahim, M., Ambacher, O., Sensfuss, S., and Gobsch, G., 2005, “Effects of Solvent and Annealing on the Improved Performance of Solar Cells Based on Poly(3-Hexylthiophene): Fullerene,” Appl. Phys. Lett., 86(20), p. 201120. [CrossRef]
Brabec, C., 2004, “Organic Photovoltaics: Technology and Market,” Sol. Energy Mater. Sol. Cells, 83(2–3), pp. 273–292. [CrossRef]
Moliton, A., and Nunzi, J.-M., 2006, “How to Model the Behaviour of Organic Photovoltaic Cells,” Polym. Int., 55(6), pp. 583–600. [CrossRef]
Clarke, T., Ballantyne, A., Nelson, J., Bradley, D., and Durrant, J., 2008, “Free Energy Control of Charge Photogeneration in Polythiophene/Fullerene Solar Cells: The Influence of Thermal Annealing on P3HT/PCBM Blends,” Adv. Funct. Mater., 18(24), pp. 4029–4035. [CrossRef]
Hoppe, H., Glatzel, T., Niggemann, M., Schwinger, W., Schaeffler, F., Hinsch, A., Lux-Steiner, M. Ch., and Sariciftci, N. S., 2006, “Efficiency Limiting Morphological Factors of MDMO-PPV:PCBM Plastic Solar Cells,” Thin Solid Films, Vol. 511–512, pp. 587–592. http://www.sciencedirect.com/science?_ob=PublicationURL&_method=list&_hubEid=1-s2.0-S0040609006X08672&_auth=y&_version=1&refSource=toc&_pubType=J&PDF_DDM_MAX=20&_cid=271603&md5=5889d85cb56e12d4065535ba435b4155&chunk=0&view=c&go=next&nextVector=&prevVector=&chunkSize=100&hitCount=136&count=136&pdfDownload=&hubEID=&zone=exportDropDown&citation-type=RIS&format=cite&count=136&NEXT_LIST=Y
Vacar, D., Maniloff, E., McBranch, D., and Heeger, A., 1997, “Charge-Transfer Range for Photoexcitations in Conjugated Polymer/Fullerene Bilayers and Blends,” Phys. Rev. B, 56(8), pp. 4573–4577. [CrossRef]
Shaw, P. E., Ruseckas, A., and Samuel, I., 2008, “Exciton Diffusion Measurements in Poly(3-Hexylthiophene),” Adv. Mater., 20(18), pp. 3516–3520. [CrossRef]
Hau, S., Yip, H.-L., Acton, O., Baek, N., Ma, H., and Jen, A.-Y., 2008, “Interfacial Modification to Improve Inverted Polymer Solar Cells,” J. Mater. Chem., 18(42), pp. 5113–5119. [CrossRef]


Grahic Jump Location
Fig. 3

Output current density versus voltage characteristics of polymer photovoltaics using a ternary (P3HT:PCBM:pentacene) composition for the active layer dissolved in DCB from 20 to 60 mg/ml and thermally annealed

Grahic Jump Location
Fig. 2

Output current density versus voltage characteristics of polymer photovoltaics device using a ternary (P3HT:PCBM:pentacene) composition deposited in 40 mg/ml solution

Grahic Jump Location
Fig. 1

Output current density versus voltage characteristics of photovoltaic devices from binary (P3HT:PCBM) and ternary (P3HT:PCBM:pentacene) blends dissolved in MCB



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In