Research Papers

CuO Nanoparticles Based Bulk Heterojunction Solar Cells: Investigations on Morphology and Performance

[+] Author and Article Information
Aruna P. Wanninayake

Materials Science and Engineering Department,
University of Wisconsin-Milwaukee,
3200 North Cramer Street,
Milwaukee, WI 53201
e-mail: wannina2@uwm.edu

Subhashini Gunashekar

Materials Science and Engineering Department,
University of Wisconsin-Milwaukee,
3200 North Cramer Street,
Milwaukee, WI 53201
e-mail: gunashe2@uwm.edu

Shengyi Li

Materials Science and Engineering Department,
University of Wisconsin-Milwaukee,
3200 North Cramer Street,
Milwaukee, WI 53201
e-mail: shengyi@uwm.edu

Benjamin C. Church

Materials Science and Engineering Department,
University of Wisconsin-Milwaukee,
3200 North Cramer Street,
Milwaukee, WI 53201
e-mail: church@uwm.edu

Nidal Abu-Zahra

Materials Science and Engineering Department,
University of Wisconsin-Milwaukee,
3200 North Cramer Street,
Milwaukee, WI 53201
e-mail: nidal@uwm.edu

1Corresponding author.

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received October 10, 2014; final manuscript received December 20, 2014; published online January 27, 2015. Assoc. Editor: Santiago Silvestre.

J. Sol. Energy Eng 137(3), 031016 (Jun 01, 2015) (7 pages) Paper No: SOL-14-1293; doi: 10.1115/1.4029542 History: Received October 10, 2014; Revised December 20, 2014; Online January 27, 2015

Copper oxide (CuO) is a p-type semiconductor having a band gap energy of 1.5 eV, which is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nanoparticles make them attractive candidates for improving the performance of polymer solar cells (PSCs) when incorporated in the active polymer layer. The incorporation of CuO nanoparticles in P3HT/PC70BM solar cells at the optimum concentration yields 40.7% improvement in power conversion efficiency (PCE). The CuO nanoparticles in the size range of 100–150 nm have an effective average band gap of 2.07 eV. In addition, the X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses show improvement in P3HT crystallinity, and surface analysis by atomic force microscope (AFM) shows an increase in surface roughness of the PSCs. The key factors namely photo-absorption, exciton diffusion, dissociation, charge transport, and charge collection inside the PSCs which affect the external quantum efficiency (EQE) and PCE of these cells are analyzed.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Thompson, B. C., and Frechet, J. M. J., 2008, “Polymer–Fullerene Composite Solar Cells,” Angew. Chem. Int. Ed., 47(1), pp. 58–77. [CrossRef]
Abu-Zahra, N., and Algazzar, M., 2013, “Effect of Crystallinity on the Performance of P3HT/PC70BM/n-Dodecylthiol Polymer Solar Cells,” ASME J. Sol. Energy Eng., 136(2), p. 021023. [CrossRef]
Kim, C. H., Cha, S. H., Kim, S. C., Song, M., Lee, J., Shin, W. S., Moon, S. J., Bahng, J. H., Kotov, N. A., and Jin, S. H., 2011, “Silver Nanowire Embedded in P3HT:PCBM for High-Efficiency Hybrid Photovoltaic Device Applications,” ACS Nano, 5(4), pp. 3319–3325. [CrossRef] [PubMed]
Misra, R., Fu, B. X., Plagge, A., and Morgan, S. E., 2009, “POSS-Nylon 6 Nanocomposites: Influence of POSS Structure on Surface and Bulk Properties,” J. Polym. Sci., Part B, 47(11), pp. 1088–1102. [CrossRef]
Jin, S., Naidu, B. V. K., Jeon, H., Park, S., Park, J., Kim, S. C., Lee, J. W., and Gal, Y., 2007, “Optimization of Process Parameters for High-Efficiency Polymer Photovoltaic Devices Based on P3HT: PCBM System,” Sol. Energy Mater. Sol. Cells, 91(13), pp. 1187–1193. [CrossRef]
Xie, F., Choy, W. C. H., Wang, C. C. D., Sha, W. E. I., and Fung, D. D. S., 2011, “Improving the Efficiency of Polymer Solar Cells by Incorporating Gold Nanoparticles into all Polymer Layers,” Appl. Phys. Lett., 99(15), p. 153304. [CrossRef]
Li, G., Zhu, R., and Yang, Y., 2012, “Polymer Solar Cells,” Nat. Photonics, 6(3), pp. 153–161. [CrossRef]
Beek, W. J. E., Wienk, M. M., and Janssen, R. A. J., 2004, “Efficient Hybrid Solar Cells From Zinc Oxide Nanoparticles and a Conjugated Polymer,” Adv. Mater., 16(12), pp. 1009–1013. [CrossRef]
Liao, H., Tsao, C., Lin, T., Jao, M., Chuang, C., Chang, S., Huang, Y., Shao, Y., Chen, C., Jeng, C., Chen, Y., and Su, W., 2012, “Nanoparticle-Tuned Self-Organization of a Bulk Heterojunction Hybrid Solar Cell With Enhanced Performance,” ACS Nano, 6(2), pp. 1657–1666. [CrossRef] [PubMed]
Liu, K., Qu, S., Zhang, X., Tan, F., and Wang, Z., 2013, “Improved Photovoltaic Performance of Silicon Nanowire/Organic Hybrid Solar Cells by Incorporating Silver Nanoparticles,” Nanoscale Res. Lett., 8(88), pp. 1–6. [CrossRef] [PubMed]
Sun, B., Marx, E., and Greenham, N. C., 2003, “Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers,” Nano Lett., 3(7), pp. 961–963. [CrossRef]
Zhu, R., Jiang, C. Y., Liu, B., and Ramakrishna, S., 2009, “Highly Efficient Nanoporous TiO2-Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal-Free Organic Dye,” Adv. Mater., 21(9), pp. 994–1000. [CrossRef]
Shao, S., Liu, F., Fang, G., Zhang, B., Xie, Z., and Wang, L., 2011, “Enhanced Performances of Hybrid Polymer Solar Cells With p-Methoxybenzoic Acid Modified Zinc Oxide Nanoparticles as an Electron Acceptor,” Org. Electron., 12(4), pp. 641–647. [CrossRef]
Wu, Z., Song, T., Xia, Z., Wei, H., and Sun, B., 2013, “Enhanced Performance of Polymer Solar Cell With ZnO Nanoparticle Electron Transporting Layer Passivated by In Situ Cross-Linked Three-Dimensional Polymer Network,” Nanotechnology, 24(48), pp. 1–8. [CrossRef]
Mbule, P. S., Kim, T. H., Kimb, B. S., Swart, H. C., and Ntwaeaborw, O. M., 2013, “Effects of Particle Morphology of ZnO Buffer Layer on the Performance of Organic Solar Cell Devices,” Sol. Energy Mater. Solar Cells, 112, pp. 6–12. [CrossRef]
Shen, W., Tang, J., Yang, R., Cong, H., Bao, X., Wang, Y., Wang, X., Huang, Z., Liu, J., Huang, L., Jiao, J., Xu, Q., Chen, W., and Belfiore, L. A., 2014, “Enhanced Efficiency of Polymer Solar Cells by Incorporated Ag–SiO2 Core–Shell Nanoparticles in the Active Layer,” RSC Adv., 4(9), pp. 4379–4386. [CrossRef]
Jankovic, V., Yang, Y. M., You, J., Dou, L., Liu, Y., Cheung, P., Chang, J. P., and Yang, Y., 2013, “Active Layer-Incorporated, Spectrally Tuned Au/SiO2 Core/Shell Nanorod-Based Light Trapping for Organic Photovoltaics,” ACS Nano, 7(5), pp. 3815–3822. [CrossRef] [PubMed]
Kidowaki, H., Oku, T., and Akiyama, T., 2012, “Fabrication and Characterization of CuO/ZnO Solar Cells,” J. Phys., 352(1), p. 012022. [CrossRef]
Cheng, Y., Yang, S., and Hsu, C., 2009, “Synthesis of Conjugated Polymers for Organic Solar Cell Applications,” Chem. Rev., 109(11), pp. 5868–5923. [CrossRef] [PubMed]
Liu, R., 2014, “Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells,” Materials, 7(4), pp. 2747–2771. [CrossRef]
“Solar Cell Conversion-Efficiency limits, Solar Cell,” Accessed Aug. 2014. Available at: http://aerostudents.com/files/solarCells/CH5SolarCellConversionEfficiencyLimits.pdf
Wright, M., and Uddin, A., 2012, “Organic–Inorganic Hybrid Solar Cells: A Comparative Review,” Sol. Energy Mater. Sol. Cells, 107, pp. 87–111. [CrossRef]
Moliton, A., and Nunzi, J. M., 2006, “How to Model the Behavior of Organic Photovoltaic Cells,” Polym. Int., 55(6), pp. 583–600. [CrossRef]
Bundgaard, E., and Krebs, F. C., 2007, “Low Band Gap Polymers for Organic Photovoltaics,” Sol. Energy Mater. Sol. Cells, 91(11), pp. 954–985. [CrossRef]
Bundgaard, E., Shaheen, S. E., Krebs, F. C., and Ginley, D. S., 2007, “Bulk Heterojunctions Based on a Low Band Gap Copolymer of Thiophene and Benzothiadiazole,” Sol. Energy Mater. Solar Cells, 91(17), pp. 1631–1637. [CrossRef]
De Freitas, J. N., Korala, L., Reynolds, L. X., Haque, S. A., Brock, S. L., and Nogueira, A. F., 2012, “Connecting the (Quantum) Dots: Towards Hybrid Photovoltaic Devices Based on Chalcogenide Gels,” Phys. Chem. Chem. Phys., 14(43), pp. 15180–15184. [CrossRef] [PubMed]
Brabec, C. J., Gowrisanker, S., Halls, J. J. M., Laird, D., Jia, S., and Williams, S. P., 2010, “Polymer–Fullerene Bulk-Heterojunction Solar Cells,” Adv. Mater., 22(34), pp. 3839–3856. [CrossRef] [PubMed]
Baeten, L., Conings, B., Boyen, H. G., D'Haen, J., Hardy, A., D'Olieslaeger, M., Manca, J. V., and Van Bael, M. K., 2011, “Towards Efficient Hybrid Solar Cells Based on Fully Polymer Infiltrated ZnO Nanorod Arrays,” Adv. Mater., 23(25), pp. 2802–2805. [CrossRef] [PubMed]
George, F. A. D., Muth, M. A., Kirchartz, T., Engmann, S., Hoppe, H., Gobsch, G., Thelakkat, M., Blouin, N., Tierney, S., Carrasco-Orozco, M., Durrant, J. R., and Nelson, J., 2013, “Influence of Doping on Charge Carrier Collection in Normal and Inverted Geometry Polymer:Fullerene Solar Cells,” Sci. Rep., 3, Article No. 3335. [CrossRef]
Yoshida, K., Oku, T., Suzuki, A., Akiyama, T., and Yamasaki, Y., 2013, “Fabrication and Characterization of PCBM:P3HT Bulk Heterojunction Solar Cells Doped With Germanium Phthalocyanine or Germanium Naphthalocyanine,” Mater. Sci. Appl., 4(4A), pp. 1–15. [CrossRef]
Cullity, B. D., and Stock, S. R., 2001, Elements of X-Ray Diffraction, 3rd ed., Prentice Hall, London, UK.
Groves, I., Lever, T., and Hawkins, N., 2014, “Determination of Polymer Crystallinity by DSC,” Thermal Analysis Application Brief, Thermal Analysis and Rheology, TA-123, Accessed Sept. 2014. Available at: http://www.tainstruments.com/library_download.aspx?file=TA123.PDF
Pascui, O. F., Lohwasser, R., Sommer, M., Thelakkat, M., Thurn-Albrecht, T., and Saalwächter, K., 2010, “High Crystallinity and Nature of Crystal–Crystal Phase Transformations in Regioregular Poly(3-hexylthiophene),” Macromolecules, 43(22), pp. 9401–9410. [CrossRef]
Sun, Y., Cui, C., Wang, H., and Li, Y., 2011, “Efficiency Enhancement of Polymer Solar Cells Based on Poly(3-hexylthiophene)/Indene-C70 Bisadduct via Methylthiophene Additive,” Adv. Energy Mater., 1(6), pp. 1058–1061. [CrossRef]
Chang, Y. M., and Wang, L., 2008, “Efficient Poly(3-hexylthiophene)-Based Bulk Heterojunction Solar Cells Fabricated by an Annealing-Free Approach,” J. Phys. Chem. C, 112(45), pp. 17716–17720. [CrossRef]
Gregg, B. A., and Hanna, M. C., 2003, “Comparing Organic to Inorganic Photovoltaic Cells: Theory, Experiment, and Simulation,” J. Appl. Phys., 93(6), pp. 3605–3614. [CrossRef]
Wang, D. H., Moon, J. S., Seifter, J., Jo, J., Park, J. H., Park, O., and Heeger, A. J., 2011, “Sequential Processing: Control of Nanomorphology in Bulk Heterojunction Solar Cells,” Nano Lett., 11(8), pp. 3163–3168. [CrossRef] [PubMed]
Gadisa, A., Svensson, M., Andersson, M. R., and Inganäs, O., 2004, “Correlation Between Oxidation Potential and Open-Circuit Voltage of Composite Solar Cells Based on Blends of Polythiophenes/Fullerene Derivative,” Appl. Phys. Lett., 84(9), pp. 1609–1611. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic illustration of the structure of a PSC

Grahic Jump Location
Fig. 2

PCE of P3HT/PCBM/CuO-NP hybrid solar cells

Grahic Jump Location
Fig. 3

EQE of P3HT/PCBM/CuO-NPs hybrid solar cells

Grahic Jump Location
Fig. 4

EQE values with different amounts of CuO NPs

Grahic Jump Location
Fig. 5

Optical absorption spectra of the synthesized PSCs

Grahic Jump Location
Fig. 6

(a) Schematic band structure of the P3HT/PCBM/CuO NP solar cell. (b) SEM image of the PSC.

Grahic Jump Location
Fig. 7

XRD spectra of P3HT/PCBM thin films containing CuO NPs

Grahic Jump Location
Fig. 8

Crystallinity of PSC's determined by XRD and DSC-Eq. (4)

Grahic Jump Location
Fig. 9

Crystallinity of PSC's determined by XRD and DSC-Eq. (5)

Grahic Jump Location
Fig. 10

Effect of CuO NPs on the crystallinity and PCE of the PSCs

Grahic Jump Location
Fig. 11

AFM images for P3HT/PCBM layers with (a) no CuO NPs, (b) 0.2 mg CuO NPs, (c) 0.4 mg CuO NPs, (d) 0.6 mg CuO NPs, (e) 0.8 mg CuO NPs, and (f) 1 mg CuO NPs



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In