Kodama, T., and Gokon, N., 2007, “Thermochemical Cycles for High-Temperature Solar Hydrogen Production,” Chem. Rev., 107(10), pp. 4048–4077.
[CrossRef] [PubMed]Romero, M., and Steinfeld, A., 2012, “Concentrating Solar Thermal Power and Thermochemical Fuels,” Energy Environ. Sci., 5(11), pp. 9234–9245.
[CrossRef]Nakamura, T., 1977, “Hydrogen Production From Water Utilizing Solar Heat at High Temperatures,” Sol. Energy, 19(5), pp. 467–475.
[CrossRef]Tamaura, Y., Kojima, M., Hasegawa, N., Tsuji, M., Ehrensberger, K., and Steinfeld, A., 1997, “Solar Energy Conversion Into H
2 Energy Using Ferrites,” J. Phys. IV, 7(C1), pp. 673–674.
[CrossRef]Diver, R. B., Miller, J. E., Allendorf, M. D., Siegel, N. P., and Hogan, R. E., 2008, “Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines,” ASME J. Sol. Energy Eng., 130(4), p. 041001.
[CrossRef]Palumbo, R., Lédé, J., Boutin, O., Ricart, E. E., Steinfeld, A., Möller, S., Weidenkaff, A., Fletcher, E. A., and Bielicki, J., 1998, “The Production of Zn From ZnO in a High- Temperature Solar Decomposition Quench Process—I. The Scientific Framework for the Process,” Chem. Eng. Sci., 53(14), pp. 2503–2517.
[CrossRef]Hamed, T. A., Davidson, J. H., and Stolzenburg, M., 2008, “Hydrolysis of Evaporated Zn in a Hot Wall Flow Reactor,” ASME J. Sol. Energy Eng., 130(4), p. 041010.
[CrossRef]Hamed, T. A., Venstrom, L., Alshare, A., Brülhart, M., and Davidson, J. H., 2009, “Study of a Quench Device for the Synthesis and Hydrolysis of Zn Nanoparticles: Modeling and Experiments,” ASME J. Sol. Energy Eng., 131(3), p. 031018.
[CrossRef]Dombrovsky, L., Schunk, L., Lipiński, W., and Steinfeld, A., 2009, “An Ablation Model for the Thermal Decomposition of Porous Zinc Oxide Layer Heated by Concentrated Solar Radiation,” Int. J. Heat Mass Transf., 52(11–12), pp. 2444–2452.
[CrossRef]Schunk, L. O., Lipiński, W., and Steinfeld, A., 2009, “Heat Transfer Model of a Solar Receiver–Reactor for the Thermal Dissociation of ZnO—Experimental Validation at 10 kW and Scale-Up to 1 MW,” Chem. Eng. J., 150(2–3), pp. 502–508.
[CrossRef]Venstrom, L. J., and Davidson, J. H., 2013, “The Kinetics of the Heterogeneous Oxidation of Zinc Vapor by Carbon Dioxide,” Chem. Eng. Sci., 93, pp. 163–172.
[CrossRef]Abanades, S., and Flamant, G., 2006, “Thermochemical Hydrogen Production From a Two-Step Solar-Driven Water-Splitting Cycle Based on Cerium Oxides,” Sol. Energy, 80(12), pp. 1611–1623.
[CrossRef]Chueh, W. C., and Haile, S. M., 2009, “Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane From H
2O and CO
2,” ChemSusChem, 2(8), pp. 735–739.
[CrossRef] [PubMed]Chueh, W. C., and Haile, S. M., 2010, “A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO
2 Mitigation,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 368(1923), pp. 3269–3294.
[CrossRef]Venstrom, L. J., Petkovich, N., Rudisill, S., Stein, A., and Davidson, J. H., 2012, “The Effects of Morphology on the Oxidation of Ceria by Water and Carbon Dioxide,” ASME J. Sol. Energy Eng., 134(1), p. 011005.
[CrossRef]Rudisill, S. G., Venstrom, L. J., Petkovich, N. D., Quan, T., Hein, N., Boman, D. B., Davidson, J. H., and Stein, A., 2013, “Enhanced Oxidation Kinetics in Thermochemical Cycling of CeO
2 Through Templated Porosity,” J. Phys. Chem. C, 117(4), pp. 1692–1700.
[CrossRef]Petkovich, N. D., Rudisill, S. G., Venstrom, L. J., Boman, D. B., Davidson, J. H., and Stein, A., 2011, “Control of Heterogeneity in Nanostructured Ce
1–xZr
xO
2 Binary Oxides for Enhanced Thermal Stability and Water Splitting Activity,” J. Phys. Chem. C, 115(43), pp. 21022–21033.
[CrossRef]Scheffe, J. R., and Steinfeld, A., 2012, “Thermodynamic Analysis of Cerium-Based Oxides for Solar Thermochemical Fuel Production,” Energy Fuels, 26(3), pp. 1928–1936.
[CrossRef]Scheffe, J., Jacot, R., and Patzke, G., 2013, “Synthesis, Characterization and Thermochemical Redox Performance of Hf, Zr and Sc Doped Ceria for Splitting CO
2,” J. Phys. Chem. C, 117(46), pp. 24104–24114.
[CrossRef]McDaniel, A. H., Miller, E. C., Arifin, D., Ambrosini, A., Coker, E. N., O'Hayre, R., Chueh, W. C., and Tong, J., 2013, “Sr- and Mn-Doped LaAlO
3−δ for Solar Thermochemical H
2 and CO Production,” Energy Environ. Sci., 6, pp. 2424–2428.
[CrossRef]Chueh, W. C., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S. M., and Steinfeld, A., 2010, “High-Flux Solar-Driven Thermochemical Dissociation of CO
2 and H
2O Using Nonstoichiometric Ceria,” Science, 330(6012), pp. 1797–1801.
[CrossRef] [PubMed]Panlener, R. J., Blumenthal, R. N., and Garnier, J. E., 1975, “A Thermodynamic Study of Nonstoichiometric Cerium Dioxide,” J. Phys. Chem. Solids, 36(11), pp. 1213–1222.
[CrossRef]Furler, P., Scheffe, J. R., and Steinfeld, A., 2012, “Syngas Production by Simultaneous Splitting of H
2O and CO
2 via Ceria Redox Reactions in a High-Temperature Solar Reactor,” Energy Environ. Sci., 5(3), pp. 6098–6103.
[CrossRef]Furler, P., Scheffe, J., Gorbar, M., Moes, L., Vogt, U., and Steinfeld, A., 2012, “Solar Thermochemical CO
2 Splitting Utilizing a Reticulated Porous Ceria Redox System,” Energy Fuels, 26(11), pp. 7051–7059.
[CrossRef]Ermanoski, I., Siegel, N. P., and Stechel, E. B., 2013, “A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production,” ASME J. Sol. Energy Eng., 135(3), p. 031002.
[CrossRef]Diver, R. B., Miller, J. E., Siegel, N. P., and Moss, T. A., 2010, “Testing of a CR5 Solar Thermochemical Heat Engine Prototype,” ASME Paper No. ES2010-90093.
[CrossRef]Lapp, J., Davidson, J. H., and Lipiński, W., 2012, “Efficiency of Two-Step Solar Thermochemical Non-Stoichiometric Redox Cycles With Heat Recovery,” Energy, 37(1), pp. 591–600.
[CrossRef]Bader, R., Venstrom, L. J., Davidson, J. H., and Lipiński, W., 2013, “Thermodynamic Analysis of Isothermal Redox Cycling of Ceria for Solar Fuel Production,” Energy Fuels, 27(9), pp. 5533–5544.
[CrossRef]Ermanoski, I., Miller, J. E., and Allendorf, M. D., 2014, “Efficiency Maximization in Solar-Thermochemical Fuel Production: Challenging the Concept of Isothermal Water Splitting,” Phys. Chem. Chem. Phys., pp. 8418–8427.
[CrossRef]Agrafiotis, C., Roeb, M., Konstandopoulos, A. G., Nalbandian, L., Zaspalis, V. T., Sattler, C., Stobbe, P., and Steele, A. M., 2005, “Solar Water Splitting for Hydrogen Production With Monolithic Reactors,” Sol. Energy, 79(4), pp. 409–421.
[CrossRef]Lapp, J., Davidson, J. H., and Lipiński, W., 2013, “Heat Transfer Analysis of a Solid-Solid Heat Recuperation System for Solar-Driven Nonstoichiometric Redox Cycles,” ASME J. Sol. Energy Eng., 135(3), p. 031004.
[CrossRef]Lapp, J., and Lipiński, W., 2014, “Transient Three-Dimensional Heat Transfer Model of a Solar Thermochemical Reactor for H
2O and CO
2 Splitting via Non-Stoichiometric Ceria Redox Cycling,” ASME J. Sol. Energy Eng., 136(3), p. 031006.
[CrossRef]Lipiński, W., Davidson, J. H., and Chase, T. R., 2012, “Thermochemical Reactor Systems and Methods,” Patent No. WO2013119303 A2.
Lichty, P., Muhich, C., Arifin, D., Weimer, A. W., and Steinfeld, A., 2013, “Methods and Apparatus for Gas-Phase Reduction/Oxidation Processes,” U.S. patent application 20130266502 A1.
Banerjee, A., Bala Chandran, R., and Davidson, J. H., 2014, “Experimental Investigation of a Reticulated Porous Alumina Heat Exchanger for High Temperature Gas Heat Recovery,” Appl. Therm. Eng. (in press).
[CrossRef]Haussener, S., and Steinfeld, A., 2012, “Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation,” Materials (Basel), 5(1), pp. 192–209.
[CrossRef]Wade, A., 2010, “Natural Convection in Water-Saturated Metal Foam With a Superposed Fluid Layer,” M.S. thesis, University of Minnesota, Minneapolis, MN.
Ergun, S., and Orning, A. A., 1949, “Fluid Flow Through Randomly Packed Columns and Fluidized Beds,” Ind. Eng. Chem., 41(6), pp. 1179–1184.
[CrossRef]Chekhovskoy, V. Y., and Stavrovsky, G. I., 1969, “Thermal Conductivity of Cerium Dioxide,” Ninth Conference on Thermal Conductivity, Iowa State University, pp. 295–298.
Yaws, C., 2010, Transport Properties of Chemicals and Hydrocarbons, Knovel, New York.
Modest, M. F., 2003, “Approximate Solution Methods for One-Dimensional Media,”
Radiative Heat Transfer, Academic Press, San Diego, CA, pp. 451–456.
[CrossRef]Oh, T.-S., Tokpanov, Y. S., Hao, Y., Jung, W., and Haile, S. M., 2012, “Determination of Optical and Microstructural Parameters of Ceria Films,” J. Appl. Phys., 112(10), p. 103535.
[CrossRef]Ganesan, K., and Lipiński, W., 2011, “Experimental Determination of Spectral Transmittance of Porous Cerium Dioxide in the Range 900–1700 nm,” ASME J. Heat Transfer, 133(10), p. 104501.
[CrossRef]Petrasch, J., Wyss, P., and Steinfeld, A., 2007, “Tomography-Based Monte Carlo Determination of Radiative Properties of Reticulate Porous Ceramics,” J. Quant. Spectrosc. Radiat. Transf., 105(2), pp. 180–197.
[CrossRef]Van de Hulst, H. C., 2012, Light Scattering by Small Particles, Courier Dover Publications, New York.
Kamiuto, K., 1990, “Correlated Radiative Transfer in Packed-Sphere Systems,” J. Quant. Spectrosc. Radiat. Transf., 43(1), pp. 39–43.
[CrossRef]Venstrom, L. J., Smith, R. M. De, Hao, Y., Haile, S. M., and Davidson, J. H., 2014, “Efficient Splitting of CO
2 in an Isothermal Redox Cycle Based on Ceria,” Energy Fuels, 28(4), pp. 2732–2742.
[CrossRef]Millot, F., and Mierry, P. D., 1985, “A New Method for the Study of Chemical Diffusion in Oxides With Application to Cerium Oxide CeO
2−x,” J. Phys. Chem. Solids, 46(7), pp. 797–801.
[CrossRef]Hirsch, D., 2004, “Solar Hydrogen Production by Thermal Decomposition of Natural Gas Using a Vortex-Flow Reactor,” Int. J. Hydrogen Energy, 29(1), pp. 47–55.
[CrossRef]Charvin, P., Abanades, S., Neveu, P., Lemont, F., and Flamant, G., 2008, “Dynamic Modeling of a Volumetric Solar Reactor for Volatile Metal Oxide Reduction,” Chem. Eng. Res. Des., 86(11), pp. 1216–1222.
[CrossRef]Charvin, P., Abanades, S., Lemort, F., and Flamant, G., 2008, “Analysis of Solar Chemical Processes for Hydrogen Production From Water Splitting Thermochemical Cycles,” Energy Convers. Manag., 49(6), pp. 1547–1556.
[CrossRef]Bala Chandran, R., Banerjee, A., and Davidson, J. H., 2014, “Predicted Performance of a Ceramic Foam Gas Phase Heat Recuperator for a Solar Thermochemical Reactor,” ASME Paper No. ES2014-6413.
[CrossRef]Krueger, K. R., Davidson, J. H., and Lipiński, W., 2011, “Design of a New 45 kWe High-Flux Solar Simulator for High-Temperature Solar Thermal and Thermochemical Research,” ASME J. Sol. Energy Eng., 133(1), p. 011013.
[CrossRef]Krueger, K. R., Lipiński, W., and Davidson, J. H., 2013, “Operational Performance of the University of Minnesota 45 kWe High-Flux Solar Simulator,” ASME J. Sol. Energy Eng., 135(4), p. 044501.
[CrossRef]Alfano, G., 1972, “Apparent Thermal Emittance of Cylindrical Enclosures With and Without Diaphragms,” Int. J. Heat Mass Transf., 15(12), pp. 2671–2674.
[CrossRef]Häring, H. W., 2008,
Industrial Gases Processing, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
[CrossRef]Siegel, R., and Howell, J. R., 2002, Thermal Radiation Heat Transfer, Taylor & Francis, New York.
Kuehn, T. H., and Goldstein, R. J., 1976, “Correlating Equations for Natural Convection Heat Transfer Between Horizontal Circular Cylinders,” Int. J. Heat Mass Transf., 19(10), pp. 1127–1134.
[CrossRef]Leibfried, U., and Ortjohann, J., 1995, “Convective Heat Loss From Upward and Downward-Facing Cavity Solar Receivers: Measurements and Calculations,” ASME J. Sol. Energy Eng., 117(2), pp. 75–84.
[CrossRef]“Alumina Insulation Type ZAL-15 & ZAL-15AA.”
Churchill, S. W., and Chu, H. H. S., 1975, “Correlating Equations for Laminar and Turbulent Free Convection From a Horizontal Cylinder,” Int. J. Heat Mass Transf., 18(9), pp. 1049–1053.
[CrossRef]Churchill, S. W., and Chu, H. H. S., 1975, “Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate,” Int. J. Heat Mass Transf., 18(11), pp. 1323–1329.
[CrossRef]Ganesan, K., Dombrovsky, L. A., and Lipiński, W., 2013, “Visible and Near-Infrared Optical Properties of Ceria Ceramics,” Infrared Phys. Technol., 57, pp. 101–109.
[CrossRef]Kaviany, M., 1995,
Principles of Heat Transfer in Porous Media, Springer-Verlag, New York.
[CrossRef]Wakao, N., and Kaguei, S., 1982, Heat and Mass Transfer in Packed Beds, Gordon and Breach Science Publishers, New York.
Binnewies, M., and Milke, E., 2002,
Thermochemical Data of Elements and Compounds, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
[CrossRef]Lingart, Y. K., Petrov, V. A., and Tikhonova, N. A., 1983, “Optical Properties of Leucosapphire at High Temperatures. I. Translucent Region,” High Temp., 20(5), pp. 706–713.
Apetz, R., and Bruggen, M. P. B., 2003, “Transparent Alumina: A Light- Scattering Model,” J. Am. Ceram. Soc., 86(3), pp. 480–486.
[CrossRef]“AD-998 Alumina Material Properties.”
Patankar, S., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Washington.
ANSYS® Academic Research, 2011, Ansys Fluent Users Guide, Release 14.0, pp. 1715–1762.
ANSYS® Academic Research, 2011, Ansys Fluent User Defined Functions Guide, Release 14.0.
Juvinall, R. C., and Marshek, K. M., 2006, Fundamentals of Machine Component Design, John Wiley & Sons Inc., New York.
ANSYS® Academic Research, Release 14.0.
Munro, R. G., 1997, “Evaluated Material Properties for a Sintered α-Alumina,” J. Am. Ceram. Soc., 80(8), pp. 1919–1928.
[CrossRef]