0
Research Papers

Nanoparticles of Cadmium Nitrate and Cobalt Nitrate Complexes Bearing Phosphoramide Ligands Designed for Application in Dye Sensitized Solar Cells

[+] Author and Article Information
Zahra Shariatinia

Department of Chemistry,
Amirkabir University of
Technology (Polytechnic),
P.O. Box 15875-4413,
Tehran, Iran
e-mail: shariati@aut.ac.ir

Razieh Shajareh Tuba

Department of Chemistry,
Amirkabir University of
Technology (Polytechnic),
P.O. Box 15875-4413,
Tehran, Iran
e-mail: shajareh.razieh@yahoo.com

1Corresponding author.

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING. Manuscript received February 26, 2014; final manuscript received June 29, 2014; published online July 29, 2014. Assoc. Editor: Santiago Silvestre.

J. Sol. Energy Eng 137(1), 011006 (Jul 29, 2014) (9 pages) Paper No: SOL-14-1078; doi: 10.1115/1.4028005 History: Received February 26, 2014; Revised June 29, 2014

In this study, using ultrasonic method, nanoparticles of a new phosphoramide compound and its cobalt nitrate and cadmium nitrate complexes with formula (4-NO2-C6H4NH)P(O)Cl(NH-C5H4N-2) = L (1), Co(NO3)2(L)(CH3OH) (2), Cd(NO3)2(L)(CH3OH) (3) were synthesized and characterized by 31P, 1H, 13C NMR, fourier transform infrared (FT-IR), ultraviolet–visible (UV-Vis), fluorescence spectroscopy, and elemental analysis as well as field-emission scanning electron microscopy (FE-SEM), transmission electron microsopy (TEM), and XRD techniques. The FE-SEM and high-resolution TEM (HR-TEM) analyses showed that particle sizes of the compounds 1–3 are about 20–50 nm. The compounds 1–3 were utilized as dyes for adsorption of light in dye sensitized solar cells (DSSCs) and the efficiencies of the cells were obtained equal to 0.42%, 0.49%, 0.54%, respectively. The analysis of band gap with density functional theory (DFT) calculations revealed that it decreases in the order 1 > 2 > 3, which is in consistent with the band gaps measured from fluorescence spectra. Comparing the conversion efficiencies of the three dyes illustrated that compound 3 with the smallest band gap yields the greatest efficiency.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Vougioukalakis, G. C., Philippopoulos, A. I., Stergiopoulos, T., and Falaras, P., 2011, “Contributions to the Development of Ruthenium-Based Sensitizers for Dye-Sensitized Solar Cells,” Coord. Chem. Rev., 255, pp. 2602–2621. [CrossRef]
Chen, C.-H., Hsu, Y.-C., Chou, H.-H., Thomas, K. R. J., Lin, J. T., and Hsu, C.-P., 2010, “Dipolar Compounds Containing Fluorene and a Heteroaromatic Ring as the Conjugating Bridge for High-Performance Dye-Sensitized Solar Cells,” Chem. Eur. J., 16, pp. 3184–3193. [CrossRef]
O'Regan, B., and Gratzel, M., 1991, “A Low-Cost, High-Efficiency Solar Cell Based on Dyesensitized Colloidal TiO2 Films,” Nature, 353, pp. 737–740. [CrossRef]
Saga, T., 2010, “Advances in Crystalline Silicon Solar Cell Technology for Industrial Mass Production,” NPG Asia Mater., 2, pp. 96–102. [CrossRef]
Mishra, A., Fischer, M. K. R., and Bäuerle, P., 2009, “Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules,” Angew. Chem. Int. Ed., 48, pp. 2474–2499. [CrossRef]
Grätzel, M., 2005, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells,” Inorg. Chem., 44, pp. 6841–6851. [CrossRef] [PubMed]
Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., and Pettersson, H., 2010, “Dye-Sensitized Solar Cells,” Chem. Rev., 110, pp. 6595–6663. [CrossRef] [PubMed]
Wang, H., Zhang, X., Gong, F., Zhou, G., and Wang, Z.-S., 2012, “Novel Ester-Functionalized Solidstate Electrolyte for Highly Efficient All-Solid-State Dye-Sensitized Solar Cells,” Adv. Mater., 24, pp. 121–124. [CrossRef] [PubMed]
Kimura, M., Nomoto, H., Masaki, N., and Mori, S., 2012, “Dye Molecules for Simple Cosensitization Process: Fabrication of Mixed-Dye-Sensitized Solar Cells,” Angew. Chem. Int. Ed., 51, pp. 4371–4374. [CrossRef]
Wu, K.-L., Li, C.-H., Chi, Y., Clifford, J. N., Cabau, L., Palomares, E., Cheng, Y.-M., Pan, H.-A., and Chou, P.-T., 2012, “Dye Molecular Structure Device Open-Circuit Voltage Correlation in Ru(II) Sensitizers With Heteroleptic Tridentate Chelates for Dye-Sensitized Solar Cells,” J. Am. Chem. Soc., 134, pp. 7488–7496. [CrossRef] [PubMed]
Grätzel, M., 2001, “Photoelectrochemical Cells,” Nature, 414, pp. 338–344. [CrossRef] [PubMed]
Grätzel, M., 2005, “Mesoscopic Solar Cells for Electricity and Hydrogen Production From Sunlight,” Chem. Lett., 34, pp. 8–13. [CrossRef]
Robertson, N., 2008, “Catching the Rainbow: Light Harvesting in Dye-Sensitized Solar Cells,” Angew. Chem. Int. Ed., 47, pp. 1012–1014. [CrossRef]
Ardo, S., and Meyer, G. J., 2009, “Photodriven Heterogeneous Charge Transfer With Transition-Metal Compounds Anchored to TiO2 Semiconductor Surfaces,” Chem. Soc. Rev., 38, pp. 115–164. [CrossRef] [PubMed]
Argazzi, R., Bignozzi, C. A., Heimer, T. A., and Meyer, G. J., 1997, “Remote Interfacial Electron Transfer From Supramolecular Sensitizers,” Inorg. Chem., 36, pp. 2–3. [CrossRef]
Robertson, N., 2006, “Optimizing Dyes for Dye-Sensitized Solar Cells,” Angew. Chem. Int. Ed., 45, pp. 2338–2345. [CrossRef]
Green, M. A., Emery, K., Hishikawa, Y., and Warta, W., 2010, “Solar Cell Efficiency Tables (version 35),” Prog. Photovoltaics, 18, pp. 144–150. [CrossRef]
Funaki, T., Yanagida, M., Onozawa-Komatsuzaki, N., Kasuga, K., Kawanishi, Y., Kurashige, M., Sayama, K., and Sugihara, H., 2009, “Synthesis of a New Class of Cyclometallated Ruthenium(II) Complexes and Their Application in Dye-Sensitized Solar Cells,” Inorg. Chem. Commun., 12, pp. 842–845. [CrossRef]
Nazeeruddin, Md. K., Klein, C., Liska, P., and Grätzel, M., 2005, “Synthesis of Novel Ruthenium Sensitizers and Their Application in Dye-Sensitized Solar Cells,” Coord. Chem. Rev., 249, pp. 1460–1467. [CrossRef]
Anandana, S., Madhavan, J., Maruthamuthu, P., Raghukumar, V., and Ramakrishnan, V. T., 2004, “Synthesis and Characterization of Naphthyridine and Acridinedione Ligands Coordinated Ruthenium(II) Complexes and Their Applications in Dye-Sensitized Solar Cells,” Sol. Energy Mater. Sol. Cells, 81, pp. 419–428. [CrossRef]
Vougioukalakis, G. C., Stergiopoulos, T., Kantonis, G., Kontos, A. G., Papadopoulos, K., Stublla, A., Potvin, P. G., and Falaras, P., 2010, “Terpyridine- and 2,6-Dipyrazinylpyridine-Coordinated Ruthenium(II) Complexes: Synthesis, Characterization and Application in TiO2-Based Dye-Sensitized Solar Cells,” J. Photochem. Photobiol., A, 214, pp. 22–32. [CrossRef]
Yum, J.-H., Moon, S.-J., Karthikeyan, C. S., Wietasch, H., Thelakkat, M., Zakeeruddin, S. M., Nazeeruddin, Md. K., and Grätzel, M., 2012, “Heteroleptic Ruthenium Complex Containing Substituted Triphenylamine Hole-Transport Unit as Sensitizer for Stable Dye-Sensitized Solar Cell,” Nano Energy, 1, pp. 6–12. [CrossRef]
Onozawa-Komatsuzaki, N., Yanagida, M., Funaki, T., Kasuga, K., Sayama, K., and Sugihara, H., 2011, “Near-IR Dye-Sensitized Solar Cells Using a New Type of Ruthenium Complexes Having 2,6-Bis(Quinolin-2-yl)Pyridine Derivatives,” Sol. Energy Mater Sol. Cells, 95, pp. 310–314. [CrossRef]
Funaki, T., Yanagida, M., Onozawa-Komatsuzaki, N., Kawanishi, Y., Kasuga, K., and Sugihara, H., 2009, “Ruthenium(II) Complexes With π Expanded Ligand Having Phenylene–Ethynylene Moiety as Sensitizers for Dye-Sensitized Solar Cells,” Sol. Energy Mater. Sol. Cells, 93, pp. 729–732. [CrossRef]
Li, C.-Y., Su, C., Wang, H.-H., Kumaresan, P., Hsu, C.-H., Lee, I.-T., Chang, W.-C., Tingare, Y. S., Li, T.-Y., Lin, C.-F., and Li, W.-R., 2014, “Design and Development of Cyclometalated Ruthenium Complexes Containing Thiophenyl-Pyridine Ligand for Dye-Sensitized Solar Cells,” Dyes Pigm., 100, pp. 57–65. [CrossRef]
Song, H.-K., Park, Y. H., Han, C.-H., and Jee, J.-G., 2009, “Synthesis of Ruthenium Complex and Its Application in Dye-Sensitized Solar Cells,” J. Ind. Eng. Chem., 15, pp. 62–65. [CrossRef]
Dai, F.-R., Chen, Y.-C., Lai, L.-F., Wu, W.-J., Cui, C.-H., Tan, G.-P., Wang, X.-Z., Suen Lin, J.-T., Tian, H., and Wong, W.-Y., 2012, “Unsymmetric Platinum(II) Bis(Aryleneethynylene) Complexes as Photosensitizers for Dye-Sensitized Solar Cells,” Chem. Asian J., 7, pp. 1426–1434. [CrossRef] [PubMed]
Wu, W., Xu, X., Yang, H., Hua, J., Zhang, X., Zhang, L., and Long, Y., 2011, “D-π-M-π-A Structured Platinum Acetylide Sensitizer for Dye Sensitized Solar Cells,” J. Mater. Chem., 21, pp. 10666–10671. [CrossRef]
Zhang, G., Bala, H., Cheng, Y., Shi, D., Lv, X., Yu, Q., and Wang, P., 2009, “High Efficiency and Stable Dye-Sensitized Solar Cells With an Organic Chromophore Featuring a Binary π-Conjugated Spacer,” Chem. Commun., 16, pp. 2198–2200. [CrossRef]
Kim, S. H., Kim, H. W., Sakong, C., Namgoong, J., Park, S. W., Ko, M. J., Lee, C. H., Lee, W. I., and Kim, J. P., 2011, “Effect of Five-Membered Heteroaromatic Linkers to the Performance of Phenothiazine-Based Dye-Sensitized Solar Cells,” Org. Lett., 13, pp. 5784–5787. [CrossRef] [PubMed]
Panda, M. K., Sharma, G. D., Thomas, K. R. J., and Coutsolelos, A. G., 2012, “A New Family of A2B2 Type Porphyrin Derivatives: Synthesis, Physicochemical Characterization and Their Application in Dye-Sensitized Solar Cells,” J. Mater. Chem., 22, pp. 8092–8102. [CrossRef]
He, J., Benko, G., Korodi, F., Polivka, T., Lomoth, R., Akermark, B., Sun, L., Hagfeldt, A., and Sundström, V., 2002, “Modified Phthalocyanines for Efficient Near-IR Sensitization of Nanostructured TiO2 Electrode,” J. Am. Chem. Soc., 124, pp. 4922–4932. [CrossRef] [PubMed]
Zhang, W., Jin, X., Yu, X., Zhou, J., Tang, G., Peng, D., Hu, J., and Zhong, C., 2014, “Novel Dye Sensitizers of Main Chain Polymeric Metal Complexes Based on Complexes of Diaminomaleonitrile With Cd(II), Ni(II): Synthesis, Characterization, and Photovoltaic Performance for Dye-Sensitized Solar Cells,” J. Organomet. Chem., 749, pp. 26–33. [CrossRef]
Shinpuku, Y., Inui, F., Nakai, M., and Nakabayashi, Y., 2011, “Synthesis and Characterization of Novel Cyclometalated Iridium(III) Complexes for Nanocrystalline TiO2-Based Dye-Sensitized Solar Cells,” J. Photochem. Photobiol., A, 222, pp. 203–209. [CrossRef]
Xiang, N., Zhou, W., Jiang, Sh., Deng, L., Liu, Y., Tan, Z., Zhao, B., Shen, P., and Tan, S., 2011, “Synthesis and Characterization of Trivalent Metal Porphyrin With NCS Ligand for Application in Dye-Sensitized Solar Cells,” Sol. Energy Mat. Sol. Cells, 95, pp. 1174–1181. [CrossRef]
Kim, Y., Jeong, J. H., and Kang, M., 2011, “Synthesis of Bis (2,2′-bipyridine) Nitratocopper(II) Nitrate Using a Hydrothermal Method and its Application to Dye-Sensitized Solar Cells,” Inorg. Chim. Acta, 365, pp. 400–407. [CrossRef]
Linfoot, C. L., Richardson, P., McCall, K. L., Durrant, J. R., Morandeira, A., and Robertson, N., 2011, “A Nickel-Complex Sensitiser for Dye-Sensitised Solar Cells,” Sol. Energy, 85, pp. 1195–1203. [CrossRef]
Liu, X., Li, C., Peng, X., Zhou, Y., Zeng, Z., Li, Y., Zhang, T., Zhang, B., Dong, Y., Sun, D., Cheng, P., and Feng, Y., 2013, “Performance of Four Artificial Chlorine-Type Sensitizers With Different Stereostructures in Dye-Sensitized Solar Cells,” Dyes Pigm., 98, pp. 181–189. [CrossRef]
Seo, K. D., Lee, M. J., Song, H. M., Kang, H. S., and Kim, H. K., 2012, “Novel D-π-A System Based on Zinc Porphyrin dyes for Dye-Sensitized Solar Cells: Synthesis, Electrochemical, and Photovoltaic Properties,” Dyes Pigm., 94, pp. 143–149. [CrossRef]
Guo, L., Deng, J., Zhang, L., Xiu, Q., Wen, G., and Zhong, C., 2012, “Synthesis and Applications of 3,6-Carbazole-Based Conjugated Side-Chain Copolymers Containing Complexes of 1,10-Phenanthroline With Zn(II), Cd(II), and Ni(II) for Dye-Sensitized Solar Cells,” Dyes Pigm., 92, pp. 1062–1068. [CrossRef]
Shariatinia, Z., Mirhosseini Mousavi, H. S., Bereciartua, P. J., and Dusek, M., 2013, “Structures of a Novel Phosphoric Triamide and its Organotin(IV) Complex,” J. Organomet. Chem., 745–746, pp. 432–438. [CrossRef]
Shariatinia, Z., Asadi, E., Yousefi, M., and Sohrabi, M., 2012, “Novel Organotin(IV) Complexes of Organophosphorus Ligands; Synthesis, Spectroscopic, Structural Study and DFT Calculations,” J. Organomet. Chem., 715, pp. 82–92. [CrossRef]
Shariatinia, Z., Asadi, E., Tavasolinasab, V., and Gholivand, K., 2013, “Nanoparticles of Novel Organotin (IV) Complexes Bearing Phosphoric Triamide Ligands,” Beilstein J. Nanotechnol., 4, pp. 94–102. [CrossRef] [PubMed]
Shariatinia, Z., Védova, C. O. D., Erben, M. F., Tavasolinasab, V., and Gholivand, K., 2012, “Synthesis, Conformational and NQR Analysis of Phosphoric Triamides Containing the P(O)[N]3 Skeletons,” J. Mol. Struct., 1023, pp. 18–24. [CrossRef]
Shariatinia, Z., Sohrabi, M., Yousefi, M., Koval, T., and Dusek, M., 2012, “X-Ray Crystallography of a New Phosphoramidate; Synthesis and Spectroscopic Investigation,” Heteroat. Chem., 23, pp. 478–485. [CrossRef]
Shariatinia, Z., Sheykhpour, A., and Yousefi, M., 2011, “New Phosphoramidates: Spectroscopic Study and Ab Initio Computations,” Phosphorus, Sulfur, Silicon Relat. Elem., 186, pp. 1768–1781. [CrossRef]
Gholivand, K., Shariatinia, Z., Ahmadian, T. Z., and Tadjarodi, A., 2006, “Syntheses and Spectroscopic Investigation of Some Cyclophosphazanes: Analysis of Pseudo-Triplet Splitting,” Heteroat. Chem., 17, pp. 337–343. [CrossRef]
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J., 2009, Gaussian, Inc., Wallingford CT, Gaussian 09.
Lai, L.-F., Qin, C., Chui, C.-H., Islam, A., Han, L., Ho, C.-L., and Wong, W.-Y., 2013, “New Fluorenone-Containing Organic Photosensitizers for Dye-Sensitized Solar Cells,” Dyes Pigm., 98, pp. 428–436. [CrossRef]
Verbitskiy, E. V., Cheprakova, E. M., Subbotina, J. O., Schepochkin, A. V., Slepukhin, P. A., Rusinov, G. L., Charushin, V. N., Chupakhin, O. N., Makarova, N. I., Metelitsa, A. V., and Minkin, V. I., 2014, “Synthesis, Spectral and Electrochemical Properties of Pyrimidine Containing dyes as Photosensitizers for Dye-Sensitized Solar Cells,” Dyes Pigm., 100, pp. 201–214. [CrossRef]
Guo, L., Deng, J., Zhang, L., Xiu, Q., Wen, G., and Zhong, C., 2012, “Synthesis and Applications of 3,6-Carbazole-Based Conjugated Side-Chain Copolymers Containing Complexes of 1,10-Phenanthroline With Zn(II), Cd(II), and Ni(II) for Dye-Sensitized Solar Cells,” Dyes Pigm., 92, pp. 1062–1068. [CrossRef]
Fu, Q., 2003, “Radiation (Solar),” Encyclopedia of Atmospheric Sciences,” Vol. 5 [Rad - S], J. R.Holton, ed., Academic, Amsterdam, pp. 1859–1863.
Patterson, A., 1939, “The Scherrer Formula for X-Ray Particle Size Determination,” Phys. Rev., 56, pp. 978–982. [CrossRef]
Corbridge, D. E. C., 1995, Phosphorus, an Outline of its Chemistry, Biochemistry and Technology, 5th ed., Elsevier, The Netherlands.

Figures

Grahic Jump Location
Fig. 1

The FT-IR spectrum of compound 1

Grahic Jump Location
Fig. 2

The FT-IR spectrum of compound 2

Grahic Jump Location
Fig. 3

The FT-IR spectrum of compound 3

Grahic Jump Location
Fig. 4

The fluorescence spectra of compounds 1–3

Grahic Jump Location
Scheme 1

The synthesis pathway of dye compounds 1-3

Grahic Jump Location
Fig. 5

The FE-SEM micrographs of compounds 1–3

Grahic Jump Location
Fig. 6

The HR-TEM micrographs of compounds 1–3

Grahic Jump Location
Fig. 7

The XRD patterns of compounds 1–3

Grahic Jump Location
Fig. 8

The current–voltage (I–V) curves for compounds 1–3

Grahic Jump Location
Fig. 9

The optimized structures of compounds 1–3

Grahic Jump Location
Fig. 10

The energy levels and transitions of a desirable dye to yield high conversion efficiency

Grahic Jump Location
Fig. 11

The HOMO and LUMO energy levels (and band gaps) of TiO2 and dyes 1–3 computed at B3LYP/LANL2DZ level

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In