0
Research Papers

Optical and Electronic Simulation of Silicon/Germanium Tandem Four Terminal Solar Cells

[+] Author and Article Information
Vishnuvardhanan Vijayakumar

e-mail: vishnuvv@eden.rutgers.edu

Dunbar P. Birnie, III

e-mail: dunbar.birnie@rutgers.edu
Department of Materials Science
and Engineering,
Rutgers—State University of New Jersey,
Piscataway, NJ 08854

Contributed by the Solar Energy Division of ASME for publication in the Journal of Solar Energy Engineering. Manuscript received February 3, 2013; final manuscript received May 18, 2013; published online July 18, 2013. Assoc. Editor: Santiago Silvestre.

J. Sol. Energy Eng 136(1), 011009 (Jul 18, 2013) (7 pages) Paper No: SOL-13-1043; doi: 10.1115/1.4024744 History: Received February 03, 2013; Revised May 18, 2013

A tandem solar cell architecture of silicon and germanium solar cells in a mechanical (stack like) arrangement is evaluated to increase the efficiency of light absorption in the far infrared region from 1107 nm to 1907 nm wavelength, which constitutes about 14.5% of the power intensity in the solar AM 1.5 spectrum. In this work, the technical feasibility of tandem solar cells is investigated. Here, we report on detailed electrical and optical simulations of this structure quantifying the various theoretical and practical loss mechanisms in the encapsulation, interfaces, and in the device and indicate that a relative efficiency improvement of 20% may be attainable with silicon and germanium solar cells in this configuration. The optical and electrical parameters for silicon and germanium simulation models were extracted from experimental devices and material vendors. The developed simulation models were validated by comparing the performance of stand-alone silicon and germanium solar cells with experimental devices reported in the literature.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mehta, S., 2012, “PV Technology, Production and Cost Outlook: 2012–2016: Green Tech Media Report,” accessed: October 2, 2012, http://www.greentechmedia.com/research/report/pv-supply-2012
Woodhouse, M., James, T., Margolis, R., Feldman, D., Merkel, T., and Goodrich, A., 2011, “An Economic Analysis of Photovoltaics Versus Traditional Energy Sources: Where Are We Now and Where Might We Be in the Near Future?,” 37th IEEE Photovoltaic Specialists Conference (PVSC 37) Seattle, WA, June 19–24. [CrossRef]
Zhao, J., Wang, A., and Green, M. A., 1999, “24.5% Efficiency Silicon PERT Cells on MCZ Substrates and 24.7% Efficiency PERL Cells on FZ Substrates,” Prog. Photovoltaics., 7(6), pp. 471–474. [CrossRef]
Nayak, P. K., Bisquert, J., and Cahen, D., 2011, “Assessing Possibilities and Limits for Solar Cells,” Adv. Mater., 23(25), pp. 2870–2876. [CrossRef]
Henry, C. H., 1980, “Limiting Efficiencies of Ideal Single and Multiple Energy Gap Terrestrial Solar Cells,” J. Appl. Phys., 51(8), pp. 4494–4500. [CrossRef]
King, R. R., Law, D. C., Edmondson, K. M., Fetzer, C. M., Kinsey, G. S., Yoon, H., Sherif, R. A., and Karam, N. H., 2007, “40% Efficient Metamorphic GaInP/GaInAs/Ge Multijunction Solar Cells,” Appl. Phys. Lett., 90(18), p. 183516. [CrossRef]
Bertness, K. A., Kurtz, S. R., Friedman, D. J., Kibbler, A. E., Kramer, C., and Olson, J. M., 1990, “29.5%‐Efficient GaInP/GaAs Tandem Solar Cells,” Appl. Phys. Lett., 65(8), pp. 989–991. [CrossRef]
Karam, N. H., King, R., Cavicchi, T. B., Krut, D. B., Ermer, J. H., Haddad, M., Cai, L., Joslin, D. E., Takahashi, M., Eldredge, J. W., Nishikawa, W. T., Lillington, D. T., Keyes, B. M., and Ahrenkiel, R. K., 1999, “Development and Characterization of High-Efficiency Ga0.5In0.5P/GaAs/Ge Dual- and Triple-Junction Solar Cells,” IEEE Trans. Electron Devices, 46(10), pp. 2116–2125. [CrossRef]
Stanbery, B. J., King, B. D., Burgess, R. M., McClelland, R. W., Kim, N. P., Gale, R. P., and Mickelsen, R. A., 1990, “Lightweight Tandem GaAs/CuInSe2 Solar Cells,” IEEE Trans. Electron Devices, 37(2), pp. 438–442. [CrossRef]
Burgess, R. M., Flora, C., and Schneider, M., 1990, “Performance Evaluation of Cleft GaAs/CuInSe2 Tandem Cell Circuits Through Solar Simulator Testing and Computer Modeling,” 21st IEEE Photovoltaic Specialists Conference, Kissimmee, FL, May 21–25, Vol. 2, IEEE, pp. 1340–1345. [CrossRef]
Gale, R. P., McClelland, R. W., Dingle, B. D., Gormley, J. V., and Burgess, R. M., 1990, “High-Efficiency GaAs/CuInSe2 and AlGaAs/CuInSe2 Thin-Film Tandem Solar Cells,” 21st IEEE Photovoltaic Specialists Conference, Kissimmee, FL, May 21–25, Vol. 1, IEEE, pp. 53–57. [CrossRef]
Burgess, R. M., Stanbery, B. J., Mickelsen, R. A., Avery, J. E., McClelland, R. W., King, B. D., Boden, M. J., and Gale, R. P., 1988, “High Efficiency GaAs/CuInSe2 Tandem Junction Solar Cells,” 20th IEEE Photovoltaic Specialists Conference, Las Vegas, NV, September 26–30, Vol. 1, pp. 457–461. [CrossRef]
Mitchell, K., Eberspacher, C., Ermer, J., and Pier, D., 1988, “Single and Tandem Junction CuInSe2 Cell and Module Technology,” 20th IEEE Photovoltaic Specialists Conference, Las Vegas, NV, September 26–30, Vol. 2, pp. 1384–1389. [CrossRef]
Liska, P., Thampi, K. R., Grätzel, M., Brémaud, D., Rudmann, D., Upadhyaya, H. M., and Tiwari, A. N., 2006, “Nanocrystalline Dye-Sensitized Solar Cell/Copper Indium Gallium Selenide Thin-Film Tandem Showing Greater Than 15% Conversion Efficiency,” Appl. Phys. Lett., 88(20), p. 203103. [CrossRef]
Jeong, W. S., Lee, J. W., Jung, S., Yun, J. H., and Park, N. G., 2011, “Evaluation of External Quantum Efficiency of a 12.35% Tandem Solar Cell Comprising Dye-Sensitized and CIGS Solar Cells,” Sol. Energy Mater. Sol. Cells, 95(12), pp. 3419–3423. [CrossRef]
Shpaisman, H., Niitsoo, O., Lubomirsky, I., and Cahen, D., 2008, “Can Up- and Down-Conversion and Multi-Exciton Generation Improve Photovoltaics?,” Sol. Energy Mater. Sol. Cells, 92(12), pp. 1541–1546. [CrossRef]
Trupke, T., Green, M. A., and Würfel, P., 2002, “Improving Solar Cell Efficiencies by Up-Conversion of Sub-Band-Gap Light,” J. Appl. Phys., 92(7), pp. 4117–4112. [CrossRef]
Trupke, T., Green, M. A., and Würfel, P., 2002, “Improving Solar Cell Efficiencies by Down-Conversion of High-Energy Photons,” J. Appl. Phys, 92(7), pp. 1668–1774. [CrossRef]
Green, M. A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E. D., 2012, “Solar Cell Efficiency Tables (Version 39),” Prog. Photovoltaics, 20(1), pp. 12–20. [CrossRef]
Shockley, W., and Queisser, H. J., 1961, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys., 32(5), pp. 510–519. [CrossRef]
Song, J., Li, S. S., Huang, C. H., Anderson, T. J., and Crisalle, O. D., 2003, “Modeling and Simulation of a CuGaSe/sub 2//Cu(In/sub 1-x/,Ga/sub x/)Se/sub 2/ Tandem Solar Cell,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, May 11–18, Vol. 1, pp. 555–558.
Nishiwaki, S., Siebentritt, S., Walk, P., and Ch. Lux-Steiner, M., 2003, “A Stacked Chalcopyrite Thin-Film Tandem Solar Cell With 1.2 V Open-Circuit Voltage,” Prog. Photovoltaics, 11(4), pp. 243–248. [CrossRef]
Seyrling, S., Calnan, S., Bücheler, S., Hüpkes, J., Wenger, S., Brémaud, D., Zogg, H., and Tiwari, A. N., 2009, “CuIn1−xGaxSe2 Photovoltaic Devices for Tandem Solar Cell Application,” Thin Solid Films, 517(7), pp. 2411–2414. [CrossRef]
Beiley, Z. M., and McGehee, M. G., 2012, “Modeling Low Cost Hybrid Tandem Photovoltaics With the Potential for Efficiencies Exceeding 20%,” Energy Environ. Sci., 5(11), pp. 9173–9179. [CrossRef]
Coutts, T. J., Ward, S. J., Young, D. L., Emery, K. A., Gessert, T. A., and Noufi, R., 2003, “Critical Issues in the Design of Polycrystalline, Thin-Film Tandem Solar Cells,” Prog. Photovoltaics, 11(6), pp. 359–375. [CrossRef]
Neuhaus, D. H., and Münzer, A., 2007, “Industrial Silicon Wafer Solar Cells,” Adv. OptoElectron., 2007, p. 24521. [CrossRef]
Hubner, A., Aberle, A. G., and Hezel, R., 1997, “Novel Cost-Effective Bifacial Silicon Solar Cells With 19.4% Front and 18.1% Rear Efficiency,” Appl. Phys. Lett., 70(8), pp. 1008–1010. [CrossRef]
Becker, M., Gosele, U., Hofmann, A., and Christiansen, S., 2009, “Highly p-Doped Regions in Silicon Solar Cells Quantitatively Analyzed by Small Angle Beveling and Micro-Raman Spectroscopy,” J. Appl. Phys., 106(7), p. 074515. [CrossRef]
Fellmeth, T., Mack, S., Bartsch, J., Erath, D., Jäger, U., Preu, R., Clement, F., and Biro, D., 2011, “20.1% Efficient Silicon Solar Cell With Aluminum Back Surface Field,” IEEE Electron Device Lett., 32(8), pp. 1101–1103. [CrossRef]
Aberle, A. G., 2000, “Surface Passivation of Crystalline Silicon Solar Cells: A Review,” Prog. Photovoltaics, 8(5), pp. 473–487. [CrossRef]
Zhao, L., Zhou, C. L., Li, H. L., Diao, H. W., and Wang, W. J., 2008, “Design Optimization of Bifacial HIT Solar Cells on p-Type Silicon Substrates by Simulation,” Sol. Energy Mater. Sol. Cells, 92(6), pp. 673–681. [CrossRef]
Zhang, C., and Wei, W., 2011, “Model Optimization of Nanocrystalline Si:H HIT Solar Cells,” International Conference on Electric Information and Control Engineering (ICEICE), Wuhan, China, April 15–17, pp. 1464–1468. [CrossRef]
Adachi, S., 1999, Optical Constants of Crystalline and Amorphous Semiconductors—Numerical Data and Graphical Illustration, Kluwer Academic Publishers.
Virginia Semiconductor, 2012, “General Properties of Si, Ge, SiGe, SiO2 and Si3N4,” accessed Last Accessed: March 10, 2012, www.virginiasemi.com/pdf/generalpropertiesSi62002.pdf
Kang, M. H., Ryu, K. R., Upadhyaya, A., and Rohatgi, A., 2011, “Optimization of SiN AR Coating for Si Solar Cells and Modules Through Quantitative Assessment of Optical and Efficiency Loss Mechanism,” Prog. Photovoltaics, 19(8), pp. 983–990. [CrossRef]
Mohamed, H. A., and Ali, H. M., 2008, “Characterization of ITO/CdO/Glass Thin Films Evaporated by Electron Beam Technique,” Sci. Technol. Adv. Mater., 9(2), p. 025016. [CrossRef]
Ding, K., Kirchartz, T., Pieters, B. E., Ulbrich, C., Ermes, A. M., Schicho, S., Lambertz, A., Carius, R., and Rau, U., 2011, “Characterization and Simulation of a-Si:H/μc-Si:H Tandem Solar Cells,” Sol. Energy Mater. Sol. Cells, 95(12), pp. 3318–3327. [CrossRef]
Posthuma, N. E., Flamand, G., Geens, W., and Poortmans, J., 2005, “Surface Passivation for Germanium Photovoltaic Cells,” Sol. Energy Mater. Sol. Cells, 88, pp. 37–45. [CrossRef]
Posthuma, N. E., Van der Heide, J., Flamand, G., and Poortmans, J., 2007, “Emitter Formation and Contact Realization by Diffusion for Germanium Photovoltaic Devices,” IEEE Trans. Electron Devices, 54(5), pp. 1210–1215. [CrossRef]
Posthuma, N. E., Flamand, G., and Poortmans, J., 2003, “Development of Stand-Alone Germanium Solar Cells for Application in Space Using Spin-on Diffusants,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, May 11–18, Vol. 1, pp. 777–780.
Liu, Y., Sun, Y., and Rockett, A., 2012, “A New Simulation Software of Solar Cells—wxAMPS,” Sol. Energy Mater. Sol. Cells, 98, pp. 124–128. [CrossRef]
Fonash, S. J., 2010, Solar Cell Device Physics, Elsevier, New York.
Burgelman, M., Verschraegen, J., Degrave, S., and Nollet, P., 2004, “Modeling Thin-Film PV Devices,” Prog. Photovoltaics, 12(2-3), pp. 143–153. [CrossRef]
Grunow, P., and Krauter, S., 2006, “Modelling of the Encapsulation Factors for Photovoltaic Modules,” Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, May 7–12, Vol. 2, pp. 2152–2155. [CrossRef]
Heavens, O. S., 1965, Optical Properties of Thin Solid Films, Dover, New York.
Papet, P., Nichiporuk, O., Kaminski, A., Rozier, Y., Kraiem, J., Lelievre, J. F., Chaumartin, A., Fave, A., and Lemiti, M., 2006, “Pyramidal Texturing of Silicon Solar Cell With TMAH Chemical Anisotropic Etching,” Sol. Energy Mater. Sol. Cells, 90(15), pp. 2319–2328. [CrossRef]
French, R. H., Rodriguez-Parada, J. M., Yang, M. K., Derryberry, R. A., Lemon, M. F., Brown, M. J., Haeger, C. R., Samuels, S. L., Romano, E. C., and Richardson, R. E., 2009, “Optical Properties of Materials for Concentrator Photovoltaic Systems,” 34th IEEE Photovoltaic Specialists Conference, Philadelphia, PA, June 7–2, p. 349–399. [CrossRef]
Rubin, M., 1985, “Optical Properties of Soda Lime Silica Glasses,” Sol. Energy Mater., 12, pp. 275–288. [CrossRef]
Mishima, T., Taguchi, M., Sakata, H., and Maruyama, E., 2010, “Development Status of High-Efficiency HIT Solar Cells,” Sol. Energy Mater. Sol. Cells, 95(1), pp. 18–21. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

(a) Theoretical conversion efficiencies based on Shockley and Queisser limit and (b) two junction (mechanical stack) solar cells under AM 1.5 solar spectrum

Grahic Jump Location
Fig. 2

Illustration of the proposed Si/Ge tandem solar cell

Grahic Jump Location
Fig. 3

Illustration of the modeled silicon solar cells. On the left is the HIT and on the right is the bifacial solar cell architecture.

Grahic Jump Location
Fig. 4

Illustration of the modeled germanium solar cell

Grahic Jump Location
Fig. 5

Extinction coefficient of the materials used in the tandem device

Grahic Jump Location
Fig. 6

Refractive index of the materials used in the tandem device

Grahic Jump Location
Fig. 7

Optical loss due to various layers in the top cell before the light gets absorbed by the silicon layer

Grahic Jump Location
Fig. 8

Light spectrum incident on the tandem device, absorbed by silicon cell and light incident on germanium cell

Grahic Jump Location
Fig. 9

Optical loss due to various layers in the bottom cell before the light gets absorbed by the germanium layer

Grahic Jump Location
Fig. 10

Illustration of the light intensity available at silicon and germanium surfaces and the various optical losses in the device

Grahic Jump Location
Fig. 11

Simulated and theoretical maximum current-voltage curves for silicon solar cells

Grahic Jump Location
Fig. 12

External quantum efficiency of simulated silicon and germanium solar cells

Grahic Jump Location
Fig. 13

Simulated and theoretical maximum current-voltage curves for germanium solar cells

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In