Technical Briefs

Survey of Heliostat Concepts for Cost Reduction

[+] Author and Article Information
Andreas Pfahl

German Aerospace Center (DLR),
Institute of Solar Research,
Pfaffenwaldring 38-40,
D70569 Stuttgart, Germany
e-mail: Andreas.Pfahl@dlr.de

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING. Manuscript received December 16, 2011; final manuscript received April 15, 2013; published online July 15, 2013. Assoc. Editor: Manuel Romero Alvarez.

J. Sol. Energy Eng 136(1), 014501 (Jul 15, 2013) (9 pages) Paper No: SOL-11-1287; doi: 10.1115/1.4024243 History: Received December 16, 2011; Revised April 15, 2013

A survey of hitherto concepts for cost reduction of heliostats is given. The survey might serve as a base for the development of low cost heliostats that are needed to meet the current challenging cost objectives. The concepts are related to the main heliostat subfunctions and to basic approaches for cost reduction found so far. Based on the main advantages and drawbacks of every concept, the most promising ones are indicated.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Pitz-Paal, R., Dersch, J., and Milow, B., 2005, “ECOSTAR: European Concentrated Solar Thermal Road-Mapping,” Deliverable No. 7: Roadmap Document, Cologne, Germany.
Kolb, G. J., Ho, C. H., Mancini, T. R., and Gary, J. A., 2011, “Power Tower Technology Roadmap and Cost Reduction Plan,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2011-2419.
Gary, J., Turchi, C., and Sieger, N., 2011, “CSP and the DOE Sunshot Initiative,” SolarPACES 2011 Conference, Granada, Spain, September 20–23.
Pahl, G., and Beitz, W., 2005, Engineering Design: A Systematic Approach, Springer-Verlag, New York, Chap. 6.3.
Mancini, T. R., 2000, “Catalog of Solar Heliostats,” SolarPACES Technical Report No. III-1/00.
Kolb, G. J., Jones, S. A., Donnelly, M. W., Gorman, D., Thomas, R., Davenport, R., and Lumia, R., 2007, “Heliostat Cost Reduction Study,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2007-3293.
Almanza, R., Hernández, P., Martínez, I., and Mazari, M., 2009, “Development and Mean Life of Aluminum First-Surface Mirrors for Solar Energy Applications,” Sol. Energy Mater. Sol. Cells, 93, pp. 1647–1651. [CrossRef]
Garcia, G., Egea, A., and Romero, M., 2004, “Performance Evaluation of the First Solar Tower Operating With Autonomous Heliostats: PCHA Project,” SolarPACES 2004, Oaxaca, Mexico, September 6–8.
Kubisch, S., Randt, M., Buck, R., Pfahl, A., and Unterschütz, S., 2011, “Wireless Heliostat and Control System for Large Self-Powered Heliostat Fields,” SolarPACES 2011 Conference, Granada, Spain, September 20–23.
Pfahl, A., Randt, M., Holze, C., and Unterschütz, S., 2013, “Autonomous Light-Weight Heliostat With Rim Drives,” Solar Energy, 92, pp 230–240. [CrossRef]
Plataforma Solar de Almería, 2005, “Annual Report 2004,” Almeria, Spain, pp. 43f.
Google, 2012, “RE<C: Heliostat Cable Actuation System Design,” accessed November 16, http://www.google.org/pdfs/google_heliostat_cable_actuation.pdf
Francia, G., 1969, “Multiple Mirrored Apparatus Utilizing Solar Heat,” U.S. Patent No. US3466119.
Chen, D., 2008, “Synchronized Solar Concentrator Array,” U.S. Patent No. US2008/0087274A1.
Buck, R., and Pfahl, A., 2009, “Heliostat and Process for Adjusting the Reflecting Surfaces of a Heliostat,” European Patent No. EP1635128A3.
GlassPoint Solar Inc., 2012, “Enhanced Oil Recovery (EOR): GlassPoint, the Leader in Solar EOR,” accessed November 16, 2012, http://www.glasspoint.com/
BrightSource Limitless, 2012, “Image Downloads,” accessed June 28, 2012, http://www.brightsourceenergy.com/image-downloads
Childers, P., and Blitz, J., 2009, “Multi-Axis Metamorphic Actuator and Drive System and Method,” International Patent WO2009/108159A1.
Utility Scale Solar Inc., 2011, “USS Homepage,” accessed November 16, 2012, http://www.utilityscalesolar.com/Utility_Scale_Solar,_Inc./USS_Homepage.html
Google, 2012, “RE<C: Heliostat Frame Design,” accessed November 16, http://www.google.org/pdfs/google_heliostat_frame_design.pdf
Pérez-Rábago, C., González-Aguilar, J., Prakash, R., Sachan, S., Goel, N., and Romero, M., 2012, “Development and Optical Characterization of a Heliostat to be Used in Thermosolar Electric Stations in India,” SolarPACES 2012 Conference, Marrakesh, Morroco, September 11–14.
Arbogast, P. R., 1977, “Multiple Mirrored Apparatus Utilizing Solar Energy,” U.S. Patent No. US4056313.
Hilton, R. D., 1978, “Ganged Heliostat,” U.S. Patent No. US4110010.
Medina, O., 1989, “Unified Heliostat Array,” U.S. Patent No. US4832002.
Mills, D., and Schramek, P., 2002, “Solar Energy Reflector Array,” International Patent WO02/070966A1.
Lee, S. H., Lee, I. H., Song, S. G., and Cho, S. E., 2005, “Solar Tracking Apparatus in Which Rotatable Horizontal Shafts are Combined to Track Position of Sun,” Korean Patent No. 1020050080114A.
Amsbeck, L., Buck, R., Pfahl, A., and Uhlig, R., 2008, “Optical Performance and Weight Estimation of a Heliostat With Ganged Facets,” ASME J. Sol. Energy Eng., 130(1), p. 011010. [CrossRef]
Chapman, I., and Cyriax, P., 2010, “Modular Ganged Tracking for Heliostats,” SolarPACES 2010 Conference, Perpignan, France, September 21–24.
Winter, C.-J., Sizmann, R. L., and Vant-Hull, L. L., 1991, Solar Power Plants—Fundamentals, Technology, Systems, Economics, Springer-Verlag, Berlin, Chap. 3.6.4.
Sommer, W. T., 1982, “Central Receiver Solar Collector Using Mechanically Linked Mirrors,” U.S. Patent No. Re. 30960, Reissue of US4102326.
Wu, Z., Gong, B., Wang, Z., Li, Z., and Zang, C., 2010, “An Experimental and Numerical Study of the Gap Effect on Wind Load on Heliostat,” Renewable Energy, 35, pp. 797–806. [CrossRef]
Romero, M., Conejero, E., and Sanchez, M., 1991, “Recent Experiences on Reflectant Module Components for Innovative Heliostats,” Sol. Energy Mater. Sol. Cells, 24, pp. 320–332. [CrossRef]
Geyer, M., Pitz-Paal, R., Steinfeld, A., and Tyner, C., 2002, SolarPACES Annual Report 2001, IEA, p. 5.15.
Huss, S., 2012, “Systems and Methods for Inserting Support Members into the Ground,” International Patent, WO 2012/095785 A1.
Pfahl, A., Teufel, E., Buck, R., and Hölle, E., 2008, Entwicklung eines kostengünstigen Kleinheliostaten, DLR Sonnenkolloquium, Cologne, Germany.
Prosinečki, T. C., and Schnatbaum, L., 2012, “Improvements in Solar Field Layout and Molten Salt Solar Tower System Design,” SolarPACES 2012 Conference, Marrakesh, Morocco, September 11–14.
CSIRO, 2010, “Sunny Future for Australia's Solar Industry,” ScienceImage, accessed June 28, 2012, http://www.scienceimage.csiro.au/mediarelease/mr10-124.html
Schramek, P., Al-Ansary, H., Jeter, S., Abdel-Khalik, S., Al-Suhaibani, Z., El-Leathy, A., Herzig, S., and Gaines, G., 2011, “High Temperature Solar Gas Turbine Project—Design of Heliostat Field and Particle Receiver,” SolarPACES 2011 Conference, Granada, Spain, September 20–23.
Minick, A. B., and Daniel, R., 2011, “Heliostat Joint,” U.S. Patent No. US2011/0108019 A1.
Buck, R., Wurmhöringer, K., Lehle, R., Göttsche, J., and Pfahl, A., 2010, “Development of a 30m2 Heliostat With Hydraulic Drive,” Proc. SolarPACES 2010 Conference, Perpignan, France, September 21–24.
Sankrithi, M., 2012, “Low-Cost Heliostatic Mirror With Protective Inflation Stabilizable Surface Element Means,” U.S. Patent No. 8127760B2.
Sunfolding, 2012, “Welcome to Sunfolding,” accessed Deecember 12, 2012, http://www.sunfolding.otherlab.com/
Deflandre, J., Matarasso, P., and Traisnel, J.-P., 1978, “Heliostats,” U.S. Patent No. US4129360.
Rabinowitz, M., 2010, “Solar Concentrator With Induced Dipole Alignment of Pivoted Mirrors,” U.S. Patent No. US 2010/0326521 A1.
Buck, R., and Teufel, E., 2008, “Entwicklung von Mikrospiegelsystemen für Solarthermische Kraftwerke (Mikrohelix)—Optische Bewertung des Mikrohelix-Konzeptes,” DLR-Endbericht, BMU-Projekt Förderkennzeichen 03UM0074.
Guardian, 2012, “EcoGuard Solar Boost-CFL—Concentrating Flat Laminated Mirrors,” data sheet, accessed November 16, http://www.guardian.com/oracleprd/groups/guardiandotcom/documents/native/gi_013417.pdf
Sallis, D. V., 1999, “Multi-Lever Rim-Drive Heliostat,” U.S. Patent No. US4930493.
Chong, K. K., 2010, “Optical Analysis for Simplified Astigmatic Correction of Non-Imaging Focusing Heliostat,” Sol. Energy, 84, pp. 1356–1365. [CrossRef]
Flesch, R., 2011, “Automatisierte Bestimmung der Heliostatausrichtung Mittels eines Hilfsspiegels,” Diploma thesis, RWTH Aachen, DLR, Cologne, Germany.
Berenguel, M., Rubio, F. R., Valverde, A., Lara, P. J., Arahal, M. R., Camacho, E.F., and López, M., 2004, “An Artificial Vision-Based Control System for Automatic Heliostat Positioning Offset Correction in a Central Receiver Solar Power Plant,” Sol. Energy, 76, pp. 563–575. [CrossRef]
Stone, K. W., 1986, “Automatic Heliostat Track Alignment Method,” U.S. Patent No. 4564275.
Kribus, A., Vishnevetsky, I., Yogev, A., and Rubinov, T., 2002, “Closed Loop Control of Heliostats,” SolarPACES 2002 Conference, Zürich, September 4–6, pp. 559–565.
Koningstein, R., Fitch, J. S., Ricket, D. J., and Mo, V., 2012, “Heliostat Control Scheme Using Cameras,” U.S. Patent No. US2012/0174909 A1.
Reznik, D. S., Azarchs, A. D., Csaszar, A., and Hartshorn, M. B., 2012, “Calibration and Tracking Control of Heliostats in a Central Tower Receiver Solar Power Plant,” U.S. Patent No. US2012/0092491 A1.
Hines, B. E., and Johnson, R. L., 2012, “Apparatus and Method for Pointing Light Sources,” International Patent WO 2012/125751 A2.
Convery, M. R., 2011, “Closed-Loop Control for Power Tower Heliostats,” SolarPACES 2011 Conference, Granada, Spain, September 20–23.
Aiuchi, K., Yoshida, K., Onozaki, M., Katayama, Y., Nakamura, M., and Nakamura, K., 2006, “Sensor-Controlled Heliostat With Equatorial Mount,” Sol. Energy, 80(9), pp. 1089–1097. [CrossRef]
Muehe, A., 1997, “Selbstausrichtender Heliostat für Solar-Turmkraftwerke,” German Patent No. DE19630201C1.
Noto, V. H., 1986, “Reflective Solar Tracking System,” U.S. Patent No. US4586488.
Pfahl, A., Buck, R., and Rehschuh, K., 2008, “Method for Controlling the Orientation of a Heliostat on a Receiver, Heliostat Apparatus and Solar Power Plant,” International Patent WO2008/058866A1.
Ho, C. K., Ghanbari, C. M., O'Neill, M. B., and Yuan, J. K., 2011, “On-Sun Testing of a Heliostat Using Facets With Metallized Polymer Films,” SolarPACES 2011 Conference, Granada, Spain, September 20–23.
Jorgensen, G., Gee, R., and DiGrazia, M., 2010, “Development and Testing of Abrasion Resistant Hard Coats for Polymer Film Reflectors,” SolarPACES 2010 Conference, Perpignan, France, September 21–24.
LightManufacturing, 2012, “LightManufactoring H1 Heliostat,” Data Sheet, accessed November 16, http://lightmanufacturingsystems.com/heliostats/
Weinrebe, G., 2000, “Technische, ökologische und ökonomische Analyse von solarthermischen Turmkraftwerken,” Ph.D. thesis, Institut für Energiewirtschaft und Rationelle Energieanwendung, University Stuttgart, Stuttgart, Germany.
Sayre, R. K., 1980, “Heliostat Assemblies,” U.S. Patent No. US4209231A.
Romeva, C. R., Renom, A. P., and Lecina, A. S., 2009, “Actuation Device Enabling the Relative Rotation of Structures and a Solar Tracker,” International Patent WO2009/141468A1.
Baum, V. A., Aparasi, R. R., and Garf, B. A., 1957, “High-Power Solar Installations,” Sol. Energy, 1(1), pp. 6–12. [CrossRef]
Jones, D., 1982, “Heliostatic Solar Energy Conversion System,” U.S. Patent No. US4365618.
Jones, D., and Eibling, J. A., 1982, “Rotating Field Collector Subsystem Phase 1 Study and Evaluation,” Alden E. Stilson & Associates, Sandia National Laboratories, Albuquerque, NM, Report No. SAND82-8184.
Stone, B. R., Wyatt, C. M., Hoekstra, K. H., and Stone, S. J., 2011, “Rotating Disk Solar Concentrator Configuration,” SolarPACES 2011 Conference, Granada, Spain, September 20–23.
Bonelle, D., 2011, “Rotating a Heliostat Field Around a Tower to Track the Sun,” SolarPACES 2011 Conference, Granada, Spain, September 20–23.
Diver, R. B., and Grossman, J. W., 1999, “Sandwich Construction Solar Structural Facets,” Proceedings of Renewable and Advanced Energy Systems for the 21st Century, ASME International Solar Energy Conference, Maui, HI, April 11–16, Paper No. SAND98-2845C.
Holze, C., Brüggen, H., Misseeuw, R., Cosijns, B., Albers, R., Isaza, D., Buck, and R., Pfahl, A., 2012, “Laminated Solar Thin Glass Mirror Solution for Cost Effective CSP Systems,” SolarPACES 2012 Conference, Marrakesh, Morocco, September 11–14.
Google, 2012, “RE<C: Heliostat Reflector Design,” accessed November 16, http://www.google.org/pdfs/google_heliostat_reflector_design.pdf
Ricklin, P., Smith, C., and Rogers, D., 2011, “Current Status and Future Plans for eSolar's Small Heliostat Based Solar Collection System,” SolarPACES 2011 Conference, Granada, Spain, September 20–23.
Peterka, J. A., Hosoya, N., Bienkiewicz, B., and Cermak, J. E., 1986, “Wind Load Reduction for Heliostats,” Solar Energy Research Institute, Golden, CO, Report No. SERI/STR-253-2859.
Strachan, J. W., and Houser, M. H., 1993, “Testing and Evaluation of Large-Area Heliostats for Solar Thermal Applications,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND92-1381.
Gong, B., Li, Z., Wang, Z., and Wang, Y., 2012, “Wind Induced Dynamic Response of Heliostat,” Renewable Energy, 38(1), pp. 206–213. [CrossRef]
Ulmer, S., 1998, “Influences of Cost Reduction Measures on the Beam Quality of a Large-Area Heliostat,” Diploma thesis, IER, University Stuttgart, Stuttgart, Germany.
Bender, B., Chalifoux, B., and Schneider, D., 2011, “Suspension Heliostat Material Efficiency,” SolarPACES 2011 Conference, Granada, Spain, September 20–23.
Hardt, M., Martínez, D., González, A., Garrido, C., Aladren, S., Villa, J. R., and Saenz, J., 2011, “HECTOR—Heliostat Cleaning Team-Oriented Robot,” SolarPACES 2011 Conference, Granada, Spain, September 20–23.
Zaibel, R., Dagan, E., Karni, J., and Ries, H., 1995, “An Astigmatism Corrected Target-Aligned Heliostat for High Concentration,” Sol. Energy Mater. Sol. Cells, 37(2), pp. 191–202. [CrossRef]
Buck, R., and Teufel, E., 2009, “Comparison and Optimization of Heliostat Canting Methods,” ASME J. Sol. Energy Eng., 131(1), p. 011001. [CrossRef]
Buck, B., Pfahl, A., and Roos, T. H., 2012, “Target-Aligned Heliostat Field Layout for Non-Flat Terrain,” Proceedings of 1st Southern African Solar Energy Conference, Stellenbosch, South Africa, May 21–23.
Peterka, J. A., Tan, Z., Cermak, J. E., and Bienkiewicz, B., 1989, “Mean and Peak Wind Loads on Heliostats,” ASME J. Sol. Energy Eng., 111, pp. 158–164. [CrossRef]
Pfahl, A., Buselmeier, M., and Zaschke, M., 2011, “Determination of Wind Loads on Heliostats,” SolarPACES 2011 Conference, Granada, Spain, September 20–23.
Teufel, E., Buck, R., Pfahl, A., Böing, G., and Kunert, J., 2008, “Dimensioning of Heliostat Components Under Wind and Gravity Load: The Map Approach,” SolarPACES 2008 Conference, Las Vegas, NV, March 4–7.


Grahic Jump Location
Fig. 1

Left and middle: horizontal primary axes and linear drives [37], left autonomous [5]; right: multilever heliostat [47]

Grahic Jump Location
Fig. 2

Left: elevation axis at ground level, linear and rim drive, small extra mirror for off-set correction [43]; middle: big carousel type heliostat with framework pylon [21]; right: ground anchor, framework pylon and cable drives [20]

Grahic Jump Location
Fig. 3

Left: locking of elevation drive during stow (for locking the black bolt is positioned by the azimuth drive into the gray cramp) and framework facets; middle: concrete heliostat; both seen at Themis solar power plant; right: Yoke [61]

Grahic Jump Location
Fig. 4

Left: pretensioning of azimuth drive via spring to reduce impact of back lash; right: elevation axis between torque tube and mirrors to avoid huge bearings around continuous torque tube and to reduce lever arm of gravity loads of mirror panel [17]

Grahic Jump Location
Fig. 5

Left and middle: rotation by variation of center of gravity by water channel system [6], if rolling on ground (left) no locking of orientation is possible and high mass would be needed for wind load resistance; right: hydraulic drive with fluid containers [18] (no test results known)

Grahic Jump Location
Fig. 6

Left: inflatable heliostat [41]; right: target aligned heliostat with ganged facets [48]

Grahic Jump Location
Fig. 7

Left: ganged normal vectors: ends of parallel orange vectors to the sun move on spherical shapes. The blue normal vectors of the mirror planes are fixed to the green vectors to the receiver and to the ends of the orange sun vectors and can be connected by a horizontal rod (blue) to realize ganged normal vectors (compare Ref. [29]); right: ganged heliostats according to Ref. [30] (not tested yet).

Grahic Jump Location
Fig. 8

Rim drives; left and middle: with vertical primary axis and suspension of mirror facets [65] (left) or with stretched membrane, chain-rims and suspension of rim of secondary axis [64] (middle); right: with horizontal primary axis [10] (not tested yet)

Grahic Jump Location
Fig. 9

Approaches for lowering mirror panel at storm condition (not tested yet)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In